In the direction of the negative\(y\)-axis, vector\({{\bf{e}}_1}\)rotates at\(30^\circ \). The point where the vector ends is shown below:
\(\begin{array}{c}\left( {\cos \varphi ,\sin \varphi ,0} \right) \equiv \left( {\cos \left( { - 30^\circ } \right),\sin \left( { - 30^\circ } \right)} \right)\\ \equiv \left( {\sqrt 3 /2, - 1/2,0} \right)\end{array}\)
And in the direction of the positive\(x\)-axis, vector\({{\bf{e}}_2}\)rotates at\(60^\circ \)\(\left( {90^\circ - 30^\circ = 60^\circ } \right)\). The point where the vector ends is shown below:
\(\begin{array}{c}\left( {\cos \varphi ,\sin \varphi ,0} \right) \equiv \left( {\cos 60^\circ ,\sin 60^\circ ,0} \right)\\ \equiv \left( {1/2,\sqrt 3 /2,0} \right)\end{array}\)
Vector\({{\bf{e}}_3}\)on the\(z\)-axis does not move by the rotation.
Construct the\(3 \times 3\)matrix for the rotation, as shown below:
\(A = \left[ {\begin{array}{*{20}{c}}{\sqrt 3 /2}&{1/2}&0\\{ - 1/2}&{\sqrt 3 /2}&0\\0&0&1\end{array}} \right]\)