Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Give the \({\bf{4}} \times {\bf{4}}\) matrix that rotates points in \({\mathbb{R}^{\bf{3}}}\) about the z-axis through an angle of \( - 30^\circ \), and then translates by \({\bf{p}} = \left( {5, - 2,1} \right)\).

Short Answer

Expert verified

The matrix is \(\left[ {\begin{array}{*{20}{c}}{\sqrt 3 /2}&{1/2}&0&5\\{ - 1/2}&{\sqrt 3 /2}&0&{ - 2}\\0&0&1&1\\0&0&0&1\end{array}} \right]\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Construct the \(3 \times 3\) matrix

In the direction of the negative\(y\)-axis, vector\({{\bf{e}}_1}\)rotates at\(30^\circ \). The point where the vector ends is shown below:

\(\begin{array}{c}\left( {\cos \varphi ,\sin \varphi ,0} \right) \equiv \left( {\cos \left( { - 30^\circ } \right),\sin \left( { - 30^\circ } \right)} \right)\\ \equiv \left( {\sqrt 3 /2, - 1/2,0} \right)\end{array}\)

And in the direction of the positive\(x\)-axis, vector\({{\bf{e}}_2}\)rotates at\(60^\circ \)\(\left( {90^\circ - 30^\circ = 60^\circ } \right)\). The point where the vector ends is shown below:

\(\begin{array}{c}\left( {\cos \varphi ,\sin \varphi ,0} \right) \equiv \left( {\cos 60^\circ ,\sin 60^\circ ,0} \right)\\ \equiv \left( {1/2,\sqrt 3 /2,0} \right)\end{array}\)

Vector\({{\bf{e}}_3}\)on the\(z\)-axis does not move by the rotation.

Construct the\(3 \times 3\)matrix for the rotation, as shown below:

\(A = \left[ {\begin{array}{*{20}{c}}{\sqrt 3 /2}&{1/2}&0\\{ - 1/2}&{\sqrt 3 /2}&0\\0&0&1\end{array}} \right]\)

02

Write the transformation matrix

Recall that the transformation onhomogeneous coordinates for graphics has the matrix of the form\(\left[ {\begin{array}{*{20}{c}}A&0\\{{0^T}}&1\end{array}} \right]\).

Obtain the\(4 \times 4\)matrix that rotates the points in\({\mathbb{R}^3}\)as shown below:

\(\left[ {\begin{array}{*{20}{c}}A&0\\{{0^T}}&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\sqrt 3 /2}&{1/2}&0&0\\{ - 1/2}&{\sqrt 3 /2}&0&0\\0&0&1&0\\0&0&0&1\end{array}} \right]\)

Thus, the \(4 \times 4\) matrix that rotates the points in \({\mathbb{R}^3}\) is \(\left[ {\begin{array}{*{20}{c}}{\sqrt 3 /2}&{1/2}&0&0\\{ - 1/2}&{\sqrt 3 /2}&0&0\\0&0&1&0\\0&0&0&1\end{array}} \right]\).

03

Write the translation matrix

The translation by vector\({\bf{p}} = \left( {5, - 2,1} \right)\).

Compare\(\left[ {\begin{array}{*{20}{c}}{\sqrt 3 /2}&{1/2}&0&5\\{ - 1/2}&{\sqrt 3 /2}&0&{ - 2}\\0&0&1&1\\0&0&0&1\end{array}} \right]\)with the matrix \(\left[ {\begin{array}{*{20}{c}}A&{\bf{p}}\\{{0^T}}&1\end{array}} \right]\).

So,\(A = \left[ {\begin{array}{*{20}{c}}{\sqrt 3 /2}&{1/2}&0\\{ - 1/2}&{\sqrt 3 /2}&0\\0&0&1\end{array}} \right]\)and\({\bf{p}} = \left[ {\begin{array}{*{20}{c}}5\\{ - 2}\\1\end{array}} \right]\).

Thetranslation matrix is represented as

\(\left[ {\begin{array}{*{20}{c}}1&0&0&5\\0&1&0&{ - 2}\\0&0&1&1\\0&0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{p}}\\{{0^T}}&1\end{array}} \right]\).

The matrix can also be represented as\(\left[ {\begin{array}{*{20}{c}}I&{\bf{p}}\\{{0^T}}&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&0\\{{0^T}}&1\end{array}} \right]\).

The completetransformation is represented inhomogeneous coordinates in the following matrix form:

\(\left[ {\begin{array}{*{20}{c}}1&0&0&5\\0&1&0&{ - 2}\\0&0&1&1\\0&0&0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\sqrt 3 /2}&{1/2}&0&0\\{ - 1/2}&{\sqrt 3 /2}&0&0\\0&0&1&0\\0&0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\sqrt 3 /2}&{1/2}&0&5\\{ - 1/2}&{\sqrt 3 /2}&0&{ - 2}\\0&0&1&1\\0&0&0&1\end{array}} \right]\)

Therefore, the required matrix is \(\left[ {\begin{array}{*{20}{c}}{\sqrt 3 /2}&{1/2}&0&5\\{ - 1/2}&{\sqrt 3 /2}&0&{ - 2}\\0&0&1&1\\0&0&0&1\end{array}} \right]\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free