Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Give the \(4 \times 4\) matrix that rotates points in \({\mathbb{R}^{\bf{3}}}\) about the

x-axis through an angle of \(60^\circ \). (See the figure.)

Short Answer

Expert verified

The \(4 \times 4\) matrix that rotates the points in \({\mathbb{R}^3}\) is \(\left[ {\begin{array}{*{20}{c}}1&0&0&0\\0&{1/2}&{ - \sqrt 3 /2}&0\\0&{\sqrt 3 /2}&{1/2}&0\\0&0&0&1\end{array}} \right]\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Construct the \(3 \times 3\) matrix

From the given figure, vector\({{\bf{e}}_1}\)on the\(x\)-axis is not moving by rotation.

In the direction of the positive\(z\)-axis, vector\({{\bf{e}}_2}\)rotates at\(60^\circ \). The point where the vector ends is shown below:

\(\begin{array}{c}\left( {0,\cos \varphi ,\sin \varphi } \right) \equiv \left( {0,\cos 60^\circ ,\sin 60^\circ } \right)\\ \equiv \left( {0,1/2,\sqrt 3 /2} \right)\end{array}\)

Also, in the direction of the negative\(y\)-axis, vector\({{\bf{e}}_3}\)rotates at\(60^\circ \). The point where the vector ends at\(\varphi = 150^\circ \)is shown below:

\(\begin{array}{c}\left( {0,\cos \varphi ,\sin \varphi } \right) \equiv \left( {0,\cos 150^\circ ,\sin 150^\circ } \right)\\ \equiv \left( {0, - \sqrt 3 /2,1/2} \right)\end{array}\)

Now, construct a\(3 \times 3\)matrix for the rotation, as shown below:

\(A = \left[ {\begin{array}{*{20}{c}}1&0&0\\0&{1/2}&{ - \sqrt 3 /2}\\0&{\sqrt 3 /2}&{1/2}\end{array}} \right]\)

02

Write the transformation matrix

Recall that the transformation onhomogeneous coordinates for graphics has the matrix of the form\(\left[ {\begin{array}{*{20}{c}}A&0\\{{0^T}}&1\end{array}} \right]\).

Obtain the\(4 \times 4\)matrix that rotates the points in\({\mathbb{R}^3}\), as shown below:

\(\left[ {\begin{array}{*{20}{c}}A&0\\{{0^T}}&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&0&0&0\\0&{1/2}&{ - \sqrt 3 /2}&0\\0&{\sqrt 3 /2}&{1/2}&0\\0&0&0&1\end{array}} \right]\)

Thus, the\(4 \times 4\)matrix that rotates the points in\({\mathbb{R}^3}\)is\(\left[ {\begin{array}{*{20}{c}}1&0&0&0\\0&{1/2}&{ - \sqrt 3 /2}&0\\0&{\sqrt 3 /2}&{1/2}&0\\0&0&0&1\end{array}} \right]\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 27 and 28, view vectors in \({\mathbb{R}^n}\) as \(n \times 1\) matrices. For \({\mathop{\rm u}\nolimits} \) and \({\mathop{\rm v}\nolimits} \) in \({\mathbb{R}^n}\), the matrix product \({{\mathop{\rm u}\nolimits} ^T}v\) is a \(1 \times 1\) matrix, called the scalar product, or inner product, of u and v. It is usually written as a single real number without brackets. The matrix product \({{\mathop{\rm uv}\nolimits} ^T}\) is an \(n \times n\) matrix, called the outer product of u and v. The products \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \) and \({{\mathop{\rm uv}\nolimits} ^T}\) will appear later in the text.

27. Let \({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 2}\\3\\{ - 4}\end{aligned}} \right)\) and \({\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}a\\b\\c\end{aligned}} \right)\). Compute \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \), \({{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} \),\({{\mathop{\rm uv}\nolimits} ^T}\), and \({\mathop{\rm v}\nolimits} {{\mathop{\rm u}\nolimits} ^T}\).

Suppose A, B, and Care \(n \times n\) matrices with A, X, and \(A - AX\) invertible, and suppose

\({\left( {A - AX} \right)^{ - 1}} = {X^{ - 1}}B\) …(3)

  1. Explain why B is invertible.
  2. Solve (3) for X. If you need to invert a matrix, explain why that matrix is invertible.

a. Verify that \({A^2} = I\) when \(A = \left[ {\begin{array}{*{20}{c}}1&0\\3&{ - 1}\end{array}} \right]\).

b. Use partitioned matrices to show that \({M^2} = I\) when\(M = \left[ {\begin{array}{*{20}{c}}1&0&0&0\\3&{ - 1}&0&0\\1&0&{ - 1}&0\\0&1&{ - 3}&1\end{array}} \right]\).

Let Abe an invertible \(n \times n\) matrix, and let B be an \(n \times p\) matrix. Show that the equation \(AX = B\) has a unique solution \({A^{ - 1}}B\).

In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

33. \(T\left( {{x_1},{x_2}} \right) = \left( { - 5{x_1} + 9{x_2},4{x_1} - 7{x_2}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free