Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A rotation in \({\mathbb{R}^{\bf{2}}}\) usually requires four multiplications. Compute the product below, and show that the matrix for a rotation can be factored into three shear transformations (each of which requires only one multiplication).

\(\left[ {\begin{array}{*{20}{c}}{\bf{1}}&{ - tan\varphi /2}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}\end{array}} \right]\)\[\left[ {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}&{\bf{0}}\\{sin\varphi }&{\bf{1}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}\end{array}} \right]\] \(\left[ {\begin{array}{*{20}{c}}{\bf{1}}&{ - tan\varphi /2}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}\end{array}} \right]\)

Short Answer

Expert verified

The composition is \[\left[ {\begin{array}{*{20}{c}}{\cos \varphi }&{ - \sin \varphi }&0\\{\sin \varphi }&{\cos \varphi }&0\\0&0&1\end{array}} \right]\]. For a rotation in \({\mathbb{R}^2}\), the composition is the transformation matrix in coordinates.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

State the row-column rule

If the sum of the products of matching entries from row\(i\)of matrix A and column\(j\)of matrix B equals the item in row\(i\)and column\(j\)of AB, then it can be said that product AB is defined.

The product is \({\left( {AB} \right)_{ij}} = {a_{i1}}{b_{1j}} + {a_{i2}}{b_{2j}} + ... + {a_{in}}{b_{nj}}\).a

02

Obtain the product of the matrices

Consider the matrices\(\left[ {\begin{array}{*{20}{c}}1&{ - \tan \varphi /2}&0\\0&1&0\\0&0&1\end{array}} \right]\)and\[\left[ {\begin{array}{*{20}{c}}1&0&0\\{\sin \varphi }&1&0\\0&0&1\end{array}} \right]\].

Obtain the product of the first two matrices, as shown below:

\(\begin{array}{c} \Rightarrow \left[ {\begin{array}{*{20}{c}}1&{ - \tan \varphi /2}&0\\0&1&0\\0&0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&0&0\\{\sin \varphi }&1&0\\0&0&1\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{1\left( 1 \right) - \tan \varphi /2\left( {\sin \varphi } \right) + 0\left( 0 \right)}&{1\left( 0 \right) - \tan \varphi /2\left( 1 \right) + 0\left( 0 \right)}&{1\left( 0 \right) - \tan \varphi /2\left( 0 \right) + 0\left( 1 \right)}\\{0\left( 1 \right) + 1\left( {\sin \varphi } \right) + 0\left( 0 \right)}&{0\left( 0 \right) - 1\left( 1 \right) + 0\left( 0 \right)}&{0\left( 0 \right) + 1\left( 0 \right) + 0\left( 1 \right)}\\{0\left( 1 \right) + 0\left( {\sin \varphi } \right) + 1\left( 0 \right)}&{0\left( 0 \right) + 1\left( 1 \right) + 0\left( 0 \right)}&{0\left( 0 \right) + 0\left( 0 \right) + 0\left( 1 \right)}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{1 - \sin \varphi \tan \varphi /2}&{ - \tan \varphi /2}&0\\{\sin \varphi }&1&0\\0&0&1\end{array}} \right]\end{array}\)

Thus,\(\left[ {\begin{array}{*{20}{c}}1&{ - \tan \varphi /2}&0\\0&1&0\\0&0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&0&0\\{\sin \varphi }&1&0\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{1 - \sin \varphi \tan \varphi /2}&{ - \tan \varphi /2}&0\\{\sin \varphi }&1&0\\0&0&1\end{array}} \right]\).

Now, multiply the matrix \(\left[ {\begin{array}{*{20}{c}}{1 - \sin \varphi \tan \varphi /2}&{ - \tan \varphi /2}&0\\{\sin \varphi }&1&0\\0&0&1\end{array}} \right]\) by \(\left[ {\begin{array}{*{20}{c}}1&{ - \tan \varphi /2}&0\\0&1&0\\0&0&1\end{array}} \right]\), as shown below:

\[\begin{array}{c} \Rightarrow \left[ {\begin{array}{*{20}{c}}{1 - \sin \varphi \tan \varphi /2}&{ - \tan \varphi /2}&0\\{\sin \varphi }&1&0\\0&0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&{ - \tan \varphi /2}&0\\0&1&0\\0&0&1\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{\left( {1 - \sin \varphi \tan \varphi /2} \right)\left( 1 \right) - \tan \varphi /2\left( 0 \right)}&{\left( {1 - \sin \varphi \tan \varphi /2} \right)\left( { - \tan \varphi /2} \right) - \tan \varphi /2\left( 1 \right)}&0\\{\sin \varphi \left( 1 \right) + 1\left( 0 \right) + 0\left( 0 \right)}&{\sin \varphi \left( { - \tan \varphi /2} \right) + 1\left( 1 \right) + 0\left( 0 \right)}&0\\0&0&1\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{1 - \sin \varphi \tan \varphi /2}&{\sin \varphi {{\tan }^2}\varphi /2 - 2\tan \varphi /2}&0\\{\sin \varphi }&{ - \sin \varphi \tan \varphi /2 + 1}&0\\0&0&1\end{array}} \right]\end{array}\]

Thus, the product is \[\left[ {\begin{array}{*{20}{c}}{1 - \sin \varphi \tan \varphi /2}&{\sin \varphi {{\tan }^2}\varphi /2 - 2\tan \varphi /2}&0\\{\sin \varphi }&{1 - \sin \varphi \tan \varphi /2}&0\\0&0&1\end{array}} \right]\].

03

Use the trigonometric identities

Simplify the trigonometric entry\[1 - \sin \varphi \tan \varphi /2\]using a trigonometric identity, as shown below:

\[\begin{array}{c}1 - \sin \varphi \tan \varphi /2 = 1 - \frac{{2{{\tan }^2}\varphi /2}}{{1 + {{\tan }^2}\varphi /2}}\\ = \frac{{1 + {{\tan }^2}\varphi /2 - 2{{\tan }^2}\varphi /2}}{{1 + {{\tan }^2}\varphi /2}}\\ = \frac{{1 - {{\tan }^2}\varphi /2}}{{1 + {{\tan }^2}\varphi /2}}\\ = \cos \varphi \end{array}\]

Simplify \[\sin \varphi {\tan ^2}\varphi /2 - 2\tan \varphi /2\].

\[\begin{array}{c}\sin \varphi {\tan ^2}\varphi /2 - 2\tan \varphi /2 = \tan \varphi /2\left( {\sin \varphi \tan \varphi /2 - 2} \right)\\ = \tan \varphi /2\left( {\frac{{2{{\tan }^2}\varphi /2}}{{1 + {{\tan }^2}\varphi /2}} - 2} \right)\\ = \tan \varphi /2\left( {\frac{{2{{\tan }^2}\varphi /2 - 2 - 2{{\tan }^2}\varphi /2}}{{1 + {{\tan }^2}\varphi /2}}} \right)\\ = - \frac{{\tan \varphi /2}}{{1 + {{\tan }^2}\varphi /2}}\\ = - \sin \varphi \end{array}\]

The product becomes

\[\left[ {\begin{array}{*{20}{c}}{\cos \varphi }&{ - \sin \varphi }&0\\{\sin \varphi }&{\cos \varphi }&0\\0&0&1\end{array}} \right]\].

Therefore, for a rotation in \({\mathbb{R}^2}\), the composition is the transformation matrixin coordinates.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use matrix algebra to show that if A is invertible and D satisfies \(AD = I\) then \(D = {A^{ - {\bf{1}}}}\).

In exercises 11 and 12, mark each statement True or False. Justify each answer.

a. The definition of the matrix-vector product \(A{\bf{x}}\) is a special case of block multiplication.

b. If \({A_{\bf{1}}}\), \({A_{\bf{2}}}\), \({B_{\bf{1}}}\), and \({B_{\bf{2}}}\) are \(n \times n\) matrices, \[A = \left[ {\begin{array}{*{20}{c}}{{A_{\bf{1}}}}\\{{A_{\bf{2}}}}\end{array}} \right]\] and \(B = \left[ {\begin{array}{*{20}{c}}{{B_{\bf{1}}}}&{{B_{\bf{2}}}}\end{array}} \right]\), then the product \(BA\) is defined, but \(AB\) is not.

Use the inverse found in Exercise 3 to solve the system

\(\begin{aligned}{l}{\bf{8}}{{\bf{x}}_{\bf{1}}} + {\bf{5}}{{\bf{x}}_{\bf{2}}} = - {\bf{9}}\\ - {\bf{7}}{{\bf{x}}_{\bf{1}}} - {\bf{5}}{{\bf{x}}_{\bf{2}}} = {\bf{11}}\end{aligned}\)

In Exercises 27 and 28, view vectors in \({\mathbb{R}^n}\)as\(n \times 1\)matrices. For \({\mathop{\rm u}\nolimits} \) and \({\mathop{\rm v}\nolimits} \) in \({\mathbb{R}^n}\), the matrix product \({{\mathop{\rm u}\nolimits} ^T}v\) is a \(1 \times 1\) matrix, called the scalar product, or inner product, of u and v. It is usually written as a single real number without brackets. The matrix product \({{\mathop{\rm uv}\nolimits} ^T}\) is a \(n \times n\) matrix, called the outer product of u and v. The products \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \) and \({{\mathop{\rm uv}\nolimits} ^T}\) will appear later in the text.

28. If u and v are in \({\mathbb{R}^n}\), how are \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \) and \({{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} \) related? How are \({{\mathop{\rm uv}\nolimits} ^T}\) and \({\mathop{\rm v}\nolimits} {{\mathop{\rm u}\nolimits} ^T}\) related?

Use partitioned matrices to prove by induction that for \(n = 2,3,...\), the \(n \times n\) matrices \(A\) shown below is invertible and \(B\) is its inverse.

\[A = \left[ {\begin{array}{*{20}{c}}1&0&0& \cdots &0\\1&1&0&{}&0\\1&1&1&{}&0\\ \vdots &{}&{}& \ddots &{}\\1&1&1& \ldots &1\end{array}} \right]\]

\[B = \left[ {\begin{array}{*{20}{c}}1&0&0& \cdots &0\\{ - 1}&1&0&{}&0\\0&{ - 1}&1&{}&0\\ \vdots &{}& \ddots & \ddots &{}\\0&{}& \ldots &{ - 1}&1\end{array}} \right]\]

For the induction step, assume A and Bare \(\left( {k + 1} \right) \times \left( {k + 1} \right)\) matrices, and partition Aand B in a form similar to that displayed in Exercises 23.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free