Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A rotation on a computer screen is sometimes implemented as the product of two shear-and-scale transformations, which can speed up calculations that determine how a graphic image actually appears in terms of screen pixels. (The screen consists of rows and columns of small dots, called pixels.) The first transformation \({A_{\bf{1}}}\) shears vertically and then compresses each column of pixels; the second transformation \({A_2}\) shears

horizontally and then stretches each row of pixels. Let

\({A_1} = \left[ {\begin{array}{*{20}{c}}1&0&0\\{sin\varphi }&{cos\varphi }&0\\0&0&1\end{array}} \right]\),

\[{A_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{sec\varphi }&{ - tan\varphi }&0\\0&1&0\\0&0&1\end{array}} \right]\]

Show that the composition of the two transformations is a rotation in \({\mathbb{R}^2}\).

Short Answer

Expert verified

The composition is \[{A_2}{A_1} = \left[ {\begin{array}{*{20}{c}}{\cos \varphi }&{ - \sin \varphi }&0\\{\sin \varphi }&{\cos \varphi }&0\\0&0&1\end{array}} \right]\]. For a rotation in \({\mathbb{R}^2}\), the composition is the transformation matrix in coordinates.

Step by step solution

01

State the row-column rule

If the sum of the products of matching entries from row\(i\)of matrix A and column\(j\)of matrix B equals the item in row\(i\)and column\(j\)of AB, then it can be said that product AB is defined.

The product is \({\left( {AB} \right)_{ij}} = {a_{i1}}{b_{1j}} + {a_{i2}}{b_{2j}} + ... + {a_{in}}{b_{nj}}\).

02

Obtain the product of matrices

Consider the matrices\({A_1} = \left[ {\begin{array}{*{20}{c}}1&0&0\\{\sin \varphi }&{\cos \varphi }&0\\0&0&1\end{array}} \right]\)and\[{A_2} = \left[ {\begin{array}{*{20}{c}}{\sec \varphi }&{ - \tan \varphi }&0\\0&1&0\\0&0&1\end{array}} \right]\].

Obtain the product of matrices\({A_2}{A_1}\), as shown below:

\[\begin{array}{c}{A_2}{A_1} = \left[ {\begin{array}{*{20}{c}}{\sec \varphi }&{ - \tan \varphi }&0\\0&1&0\\0&0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&0&0\\{\sin \varphi }&{\cos \varphi }&0\\0&0&1\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{\sec \varphi \left( 1 \right) - \tan \varphi \left( {\sin \varphi } \right) + 0\left( 0 \right)}&{\sec \phi \left( 0 \right) - \tan \varphi \left( {\cos \varphi } \right) + 0\left( 0 \right)}&{\sec \phi \left( 0 \right) - \tan \varphi \left( 0 \right) + 0\left( 1 \right)}\\{0\left( 1 \right) + 1\left( {\sin \varphi } \right) + 0\left( 0 \right)}&{0\left( 0 \right) + 1\left( {\cos \varphi } \right) + 0\left( 0 \right)}&{0\left( 0 \right) + 1\left( 0 \right) + 0\left( 1 \right)}\\{0\left( 1 \right) + 0\left( {\sin \varphi } \right) + 1\left( 0 \right)}&{0\left( 0 \right) + 0\left( {\cos \varphi } \right) + 1\left( 0 \right)}&{0\left( 0 \right) + 0\left( 0 \right) + 1\left( 1 \right)}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{\sec \varphi - \tan \varphi \sin \varphi }&{ - \tan \varphi \cos \varphi }&0\\{\sin \varphi }&{\cos \varphi }&0\\0&0&1\end{array}} \right]\end{array}\]

Thus, \[{A_2}{A_1} = \left[ {\begin{array}{*{20}{c}}{\sec \varphi - \tan \varphi \sin \varphi }&{ - \tan \varphi \cos \varphi }&0\\{\sin \varphi }&{\cos \varphi }&0\\0&0&1\end{array}} \right]\].

03

Use the trigonometric identities

Simplify the trigonometric entry\[\sec \varphi - \tan \varphi \sin \varphi \]using a trigonometric identity, as shown below:

\[\begin{array}{c}\sec \varphi - \tan \varphi \sin \varphi = \frac{1}{{\cos \varphi }} - \frac{{{{\sin }^2}\varphi }}{{\cos \varphi }}\\ = \frac{{1 - {{\sin }^2}\varphi }}{{\cos \varphi }}\\ = \frac{{{{\cos }^2}\varphi }}{{\cos \varphi }}\\ = \cos \varphi \end{array}\]

Simplify \[ - \tan \varphi \cos \varphi \].

\[\begin{array}{c} - \tan \varphi \cos \varphi = - \frac{{\sin \varphi }}{{\cos \varphi }} \times \cos \varphi \\ = - \sin \varphi \end{array}\]

The product\({A_2}{A_1}\)becomes

\[{A_2}{A_1} = \left[ {\begin{array}{*{20}{c}}{\cos \varphi }&{ - \sin \varphi }&0\\{\sin \varphi }&{\cos \varphi }&0\\0&0&1\end{array}} \right]\].

Therefore, for a rotation in \({\mathbb{R}^2}\), the composition is the transformation matrix in coordinates.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercise 10 mark each statement True or False. Justify each answer.

10. a. A product of invertible \(n \times n\) matrices is invertible, and the inverse of the product of their inverses in the same order.

b. If A is invertible, then the inverse of \({A^{ - {\bf{1}}}}\) is A itself.

c. If \(A = \left( {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right)\) and \(ad = bc\), then A is not invertible.

d. If A can be row reduced to the identity matrix, then A must be invertible.

e. If A is invertible, then elementary row operations that reduce A to the identity \({I_n}\) also reduce \({A^{ - {\bf{1}}}}\) to \({I_n}\).

a. Verify that \({A^2} = I\) when \(A = \left[ {\begin{array}{*{20}{c}}1&0\\3&{ - 1}\end{array}} \right]\).

b. Use partitioned matrices to show that \({M^2} = I\) when\(M = \left[ {\begin{array}{*{20}{c}}1&0&0&0\\3&{ - 1}&0&0\\1&0&{ - 1}&0\\0&1&{ - 3}&1\end{array}} \right]\).

Find the inverse of the matrix \(\left( {\begin{aligned}{*{20}{c}}{\bf{3}}&{ - {\bf{4}}}\\{\bf{7}}&{ - {\bf{8}}}\end{aligned}} \right)\).

Suppose Ais an \(n \times n\) matrix with the property that the equation \[A{\mathop{\rm x}\nolimits} = 0\] has at least one solution for each b in \({\mathbb{R}^n}\). Without using Theorem 5 or 8, explain why each equation Ax = b has in fact exactly one solution.

If \(A = \left( {\begin{aligned}{*{20}{c}}1&{ - 2}\\{ - 2}&5\end{aligned}} \right)\) and \(AB = \left( {\begin{aligned}{*{20}{c}}{ - 1}&2&{ - 1}\\6&{ - 9}&3\end{aligned}} \right)\), determine the first and second column of B.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free