Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A rotation on a computer screen is sometimes implemented as the product of two shear-and-scale transformations, which can speed up calculations that determine how a graphic image actually appears in terms of screen pixels. (The screen consists of rows and columns of small dots, called pixels.) The first transformation \({A_{\bf{1}}}\) shears vertically and then compresses each column of pixels; the second transformation \({A_2}\) shears

horizontally and then stretches each row of pixels. Let

\({A_1} = \left[ {\begin{array}{*{20}{c}}1&0&0\\{sin\varphi }&{cos\varphi }&0\\0&0&1\end{array}} \right]\),

\[{A_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}{sec\varphi }&{ - tan\varphi }&0\\0&1&0\\0&0&1\end{array}} \right]\]

Show that the composition of the two transformations is a rotation in \({\mathbb{R}^2}\).

Short Answer

Expert verified

The composition is \[{A_2}{A_1} = \left[ {\begin{array}{*{20}{c}}{\cos \varphi }&{ - \sin \varphi }&0\\{\sin \varphi }&{\cos \varphi }&0\\0&0&1\end{array}} \right]\]. For a rotation in \({\mathbb{R}^2}\), the composition is the transformation matrix in coordinates.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

State the row-column rule

If the sum of the products of matching entries from row\(i\)of matrix A and column\(j\)of matrix B equals the item in row\(i\)and column\(j\)of AB, then it can be said that product AB is defined.

The product is \({\left( {AB} \right)_{ij}} = {a_{i1}}{b_{1j}} + {a_{i2}}{b_{2j}} + ... + {a_{in}}{b_{nj}}\).

02

Obtain the product of matrices

Consider the matrices\({A_1} = \left[ {\begin{array}{*{20}{c}}1&0&0\\{\sin \varphi }&{\cos \varphi }&0\\0&0&1\end{array}} \right]\)and\[{A_2} = \left[ {\begin{array}{*{20}{c}}{\sec \varphi }&{ - \tan \varphi }&0\\0&1&0\\0&0&1\end{array}} \right]\].

Obtain the product of matrices\({A_2}{A_1}\), as shown below:

\[\begin{array}{c}{A_2}{A_1} = \left[ {\begin{array}{*{20}{c}}{\sec \varphi }&{ - \tan \varphi }&0\\0&1&0\\0&0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&0&0\\{\sin \varphi }&{\cos \varphi }&0\\0&0&1\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{\sec \varphi \left( 1 \right) - \tan \varphi \left( {\sin \varphi } \right) + 0\left( 0 \right)}&{\sec \phi \left( 0 \right) - \tan \varphi \left( {\cos \varphi } \right) + 0\left( 0 \right)}&{\sec \phi \left( 0 \right) - \tan \varphi \left( 0 \right) + 0\left( 1 \right)}\\{0\left( 1 \right) + 1\left( {\sin \varphi } \right) + 0\left( 0 \right)}&{0\left( 0 \right) + 1\left( {\cos \varphi } \right) + 0\left( 0 \right)}&{0\left( 0 \right) + 1\left( 0 \right) + 0\left( 1 \right)}\\{0\left( 1 \right) + 0\left( {\sin \varphi } \right) + 1\left( 0 \right)}&{0\left( 0 \right) + 0\left( {\cos \varphi } \right) + 1\left( 0 \right)}&{0\left( 0 \right) + 0\left( 0 \right) + 1\left( 1 \right)}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{\sec \varphi - \tan \varphi \sin \varphi }&{ - \tan \varphi \cos \varphi }&0\\{\sin \varphi }&{\cos \varphi }&0\\0&0&1\end{array}} \right]\end{array}\]

Thus, \[{A_2}{A_1} = \left[ {\begin{array}{*{20}{c}}{\sec \varphi - \tan \varphi \sin \varphi }&{ - \tan \varphi \cos \varphi }&0\\{\sin \varphi }&{\cos \varphi }&0\\0&0&1\end{array}} \right]\].

03

Use the trigonometric identities

Simplify the trigonometric entry\[\sec \varphi - \tan \varphi \sin \varphi \]using a trigonometric identity, as shown below:

\[\begin{array}{c}\sec \varphi - \tan \varphi \sin \varphi = \frac{1}{{\cos \varphi }} - \frac{{{{\sin }^2}\varphi }}{{\cos \varphi }}\\ = \frac{{1 - {{\sin }^2}\varphi }}{{\cos \varphi }}\\ = \frac{{{{\cos }^2}\varphi }}{{\cos \varphi }}\\ = \cos \varphi \end{array}\]

Simplify \[ - \tan \varphi \cos \varphi \].

\[\begin{array}{c} - \tan \varphi \cos \varphi = - \frac{{\sin \varphi }}{{\cos \varphi }} \times \cos \varphi \\ = - \sin \varphi \end{array}\]

The product\({A_2}{A_1}\)becomes

\[{A_2}{A_1} = \left[ {\begin{array}{*{20}{c}}{\cos \varphi }&{ - \sin \varphi }&0\\{\sin \varphi }&{\cos \varphi }&0\\0&0&1\end{array}} \right]\].

Therefore, for a rotation in \({\mathbb{R}^2}\), the composition is the transformation matrix in coordinates.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose Ais a \(3 \times n\) matrix whose columns span \({\mathbb{R}^3}\). Explain how to construct an \(n \times 3\) matrix Dsuch that \(AD = {I_3}\).

Suppose the transfer function W(s) in Exercise 19 is invertible for some s. It can be showed that the inverse transfer function \(W{\left( s \right)^{ - {\bf{1}}}}\), which transforms outputs into inputs, is the Schur complement of \(A - BC - s{I_n}\) for the matrix below. Find the Sachur complement. See Exercise 15.

\(\left[ {\begin{array}{*{20}{c}}{A - BC - s{I_n}}&B\\{ - C}&{{I_m}}\end{array}} \right]\)

Prove Theorem 2(b) and 2(c). Use the row-column rule. The \(\left( {i,j} \right)\)- entry in \(A\left( {B + C} \right)\) can be written as \({a_{i1}}\left( {{b_{1j}} + {c_{1j}}} \right) + ... + {a_{in}}\left( {{b_{nj}} + {c_{nj}}} \right)\) or \(\sum\limits_{k = 1}^n {{a_{ik}}\left( {{b_{kj}} + {c_{kj}}} \right)} \).

In Exercises 1 and 2, compute each matrix sum or product if it is defined. If an expression is undefined, explain why. Let

\(A = \left( {\begin{aligned}{*{20}{c}}2&0&{ - 1}\\4&{ - 5}&2\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}7&{ - 5}&1\\1&{ - 4}&{ - 3}\end{aligned}} \right)\), \(C = \left( {\begin{aligned}{*{20}{c}}1&2\\{ - 2}&1\end{aligned}} \right)\), \(D = \left( {\begin{aligned}{*{20}{c}}3&5\\{ - 1}&4\end{aligned}} \right)\) and \(E = \left( {\begin{aligned}{*{20}{c}}{ - 5}\\3\end{aligned}} \right)\)

\(A + 2B\), \(3C - E\), \(CB\), \(EB\).

Suppose A, B,and Care invertible \(n \times n\) matrices. Show that ABCis also invertible by producing a matrix Dsuch that \(\left( {ABC} \right)D = I\) and \(D\left( {ABC} \right) = I\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free