Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider the following geometric 2D transformations: D, a dilation (in which x-coordinates and y-coordinates are scaled by the same factor); R, a rotation; and T a translation. Does D commute with R? That is, is \(D\left( {R\left( {\bf{x}} \right)} \right) = R\left( {D\left( {\bf{x}} \right)} \right)\)for all \({\bf{x}}\) in \({\mathbb{R}^{\bf{2}}}\)? Does D commute with T? Does R commute with T?

Short Answer

Expert verified

D commutes with R, and matrices D and R do not commute with T.

Step by step solution

01

Write the transformation matrix for dilation, rotation, and translation

Let the transformation matrices in homogenous coordinates for dilation, rotation and translation be

\(D = \left[ {\begin{array}{*{20}{c}}s&0&0\\0&s&0\\0&0&1\end{array}} \right]\), \(R = \left[ {\begin{array}{*{20}{c}}{\cos \phi }&{ - \sin \phi }&0\\{\sin \phi }&{\cos \phi }&0\\0&0&1\end{array}} \right]\), and \(T = \left[ {\begin{array}{*{20}{c}}1&0&h\\0&1&k\\0&0&1\end{array}} \right]\).

02

Compute the product of transformation matrices

Calculate the value of \(DR\).

\(DR = \left[ {\begin{array}{*{20}{c}}{s\cos \phi }&{ - s\sin \phi }&0\\{s\sin \phi }&{s\cos \phi }&0\\0&0&1\end{array}} \right]\)

Calculate the value of \(RD\).

\[RD = \left[ {\begin{array}{*{20}{c}}{s\cos \phi }&{ - s\sin \phi }&0\\{s\sin \phi }&{s\cos \phi }&0\\0&0&1\end{array}} \right]\]

Calculate the value of \(DT\).

\(DT = \left[ {\begin{array}{*{20}{c}}s&0&{sh}\\0&s&{sk}\\0&0&1\end{array}} \right]\)

Calculate the value of \(TD\).

\(TD = \left[ {\begin{array}{*{20}{c}}s&0&h\\0&s&k\\0&0&1\end{array}} \right]\)

Calculate the value of \(RT\).

\(RT = \left[ {\begin{array}{*{20}{c}}{\cos \phi }&{ - \sin \phi }&{h\cos \phi - k\sin \phi }\\{\sin \phi }&{\cos \phi }&{h\sin \phi + k\cos \phi }\\0&0&1\end{array}} \right]\)

Calculate the value of \(TR\).

\(TR = \left[ {\begin{array}{*{20}{c}}{\cos \varphi }&{ - \sin \varphi }&h\\{\sin \varphi }&{\cos \varphi }&k\\0&0&1\end{array}} \right]\)

03

Check the commutation of transformation matrices

For the transformation matrices, \(DR = RD\).

So, D commutes with R.

\(DT \ne TD\)

So, D does not commute with T.

And

\(RT \ne TR\)

So, R does not commute with T.

Hence, D commutes with R, and matrices D and R do not commute with T.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(A = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}&{ - {\bf{3}}}\\{ - {\bf{4}}}&{\bf{6}}\end{aligned}} \right)\) and \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{8}}&{\bf{4}}\\{\bf{5}}&{\bf{5}}\end{aligned}} \right)\) and \(C = \left( {\begin{aligned}{*{20}{c}}{\bf{5}}&{ - {\bf{2}}}\\{\bf{3}}&{\bf{1}}\end{aligned}} \right)\). Verfiy that \(AB = AC\) and yet \(B \ne C\).

A useful way to test new ideas in matrix algebra, or to make conjectures, is to make calculations with matrices selected at random. Checking a property for a few matrices does not prove that the property holds in general, but it makes the property more believable. Also, if the property is actually false, you may discover this when you make a few calculations.

38. Use at least three pairs of random \(4 \times 4\) matrices Aand Bto test the equalities \({\left( {A + B} \right)^T} = {A^T} + {B^T}\) and \({\left( {AB} \right)^T} = {A^T}{B^T}\). (See Exercise 37.) Report your conclusions. (Note:Most matrix programs use \(A'\) for \({A^{\bf{T}}}\).

Prove Theorem 2(b) and 2(c). Use the row-column rule. The \(\left( {i,j} \right)\)- entry in \(A\left( {B + C} \right)\) can be written as \({a_{i1}}\left( {{b_{1j}} + {c_{1j}}} \right) + ... + {a_{in}}\left( {{b_{nj}} + {c_{nj}}} \right)\) or \(\sum\limits_{k = 1}^n {{a_{ik}}\left( {{b_{kj}} + {c_{kj}}} \right)} \).

In Exercises 27 and 28, view vectors in \({\mathbb{R}^n}\) as \(n \times 1\) matrices. For \({\mathop{\rm u}\nolimits} \) and \({\mathop{\rm v}\nolimits} \) in \({\mathbb{R}^n}\), the matrix product \({{\mathop{\rm u}\nolimits} ^T}v\) is a \(1 \times 1\) matrix, called the scalar product, or inner product, of u and v. It is usually written as a single real number without brackets. The matrix product \({{\mathop{\rm uv}\nolimits} ^T}\) is an \(n \times n\) matrix, called the outer product of u and v. The products \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \) and \({{\mathop{\rm uv}\nolimits} ^T}\) will appear later in the text.

27. Let \({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 2}\\3\\{ - 4}\end{aligned}} \right)\) and \({\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}a\\b\\c\end{aligned}} \right)\). Compute \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \), \({{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} \),\({{\mathop{\rm uv}\nolimits} ^T}\), and \({\mathop{\rm v}\nolimits} {{\mathop{\rm u}\nolimits} ^T}\).

In Exercises 1โ€“9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1โ€“4.

4. \[\left[ {\begin{array}{*{20}{c}}I&0\\{ - X}&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&B\\C&D\end{array}} \right]\]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free