Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exercises 25 and 26 prove Theorem 4 for \(A = \left( {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right)\).

26. Show that if \(ad - bc \ne {\bf{0}}\), the formula for \({A^{ - 1}}\) works.

Short Answer

Expert verified

If \(ad - bc \ne 0\), then \({A^{ - 1}} = \frac{1}{{ad - bc}}\left( {\begin{aligned}{*{20}{c}}d&{ - b}\\{ - c}&a\end{aligned}} \right)\).

Step by step solution

01

Write the algorithm for obtaining \({A^{ - 1}}\)

The inverse of an\(m \times m\)matrix A can be computed using theaugmented matrix \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\), where\(I\)is theidentity matrix. Matrix Ahas an inverse only if \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\) is row equivalent to \(\left( {\begin{aligned}{*{20}{c}}I&{{A^{ - 1}}}\end{aligned}} \right)\).

02

Obtain the inverse of matrix A

Consider the matrix\(A = \left( {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right)\).

Write the augmented matrix\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\)as shown below:

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}a&b&1&0\\c&d&0&1\end{aligned}} \right)\)

Row reduce the augmented matrix as shown below:

Multiply row one by\(\frac{1}{a}\).

\(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&{b/a}&{1/a}&0\\c&d&0&1\end{aligned}} \right)\)

Use the\({x_1}\)term in the first equation to eliminate the\(c{x_1}\)term from the second equation. Add\( - c\)times row one to row two.

\(\left( {\begin{aligned}{*{20}{c}}1&{b/a}&{1/a}&0\\0&{d - \frac{{bc}}{a}}&{ - c/a}&1\end{aligned}} \right) \sim \left( {\begin{aligned}{*{20}{c}}1&{b/a}&{1/a}&0\\0&{\frac{{ad - bc}}{a}}&{ - c/a}&1\end{aligned}} \right)\)

Use the\(\frac{{b{x_2}}}{a}\)term in the first equation to eliminate the\(\left( {\frac{{ad - bc}}{a}} \right){x_2}\)term from the second equation. Add\( - \left( {\frac{b}{{ad - bc}}} \right)\)times row two to row one.

\(\left( {\begin{aligned}{*{20}{c}}1&{b/a}&{1/a}&0\\0&{\frac{{ad - bc}}{a}}&{ - c/a}&1\end{aligned}} \right) \sim \left( {\begin{aligned}{*{20}{c}}1&0&{\frac{d}{{ad - bc}}}&{ - \frac{b}{{ad - bc}}}\\0&{\frac{{ad - bc}}{a}}&{ - c/a}&1\end{aligned}} \right)\)

Multiply row two by\(\left( {\frac{a}{{ad - bc}}} \right)\).

\(\left( {\begin{aligned}{*{20}{c}}1&0&{\frac{d}{{ad - bc}}}&{ - \frac{b}{{ad - bc}}}\\0&1&{\frac{{ - c}}{{ad - bc}}}&{\frac{a}{{ad - bc}}}\end{aligned}} \right)\)

By comparing with\(\left( {\begin{aligned}{*{20}{c}}I&{{A^{ - 1}}}\end{aligned}} \right)\), you get\({A^{ - 1}} = \left( {\begin{aligned}{*{20}{c}}{\frac{d}{{ad - bc}}}&{ - \frac{b}{{ad - bc}}}\\{ - \frac{c}{{ad - bc}}}&{\frac{a}{{ad - bc}}}\end{aligned}} \right)\), or\({A^{ - 1}} = \frac{1}{{ad - bc}}\left( {\begin{aligned}{*{20}{c}}d&{ - b}\\{ - c}&a\end{aligned}} \right)\).

Thus, theinverseof matrix is \({A^{ - 1}} = \frac{1}{{ad - bc}}\left( {\begin{aligned}{*{20}{c}}d&{ - b}\\{ - c}&a\end{aligned}} \right)\) if \(ad - bc \ne 0\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose \(\left( {B - C} \right)D = 0\), where Band Care \(m \times n\) matrices and \(D\) is invertible. Show that B = C.

Suppose the first two columns, \({{\bf{b}}_1}\) and \({{\bf{b}}_2}\), of Bare equal. What can you say about the columns of AB(if ABis defined)? Why?

Suppose Tand U are linear transformations from \({\mathbb{R}^n}\) to \({\mathbb{R}^n}\) such that \(T\left( {U{\mathop{\rm x}\nolimits} } \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\) . Is it true that \(U\left( {T{\mathop{\rm x}\nolimits} } \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\)? Why or why not?

In exercise 11 and 12, mark each statement True or False.Justify each answer.

a. If \(A = \left[ {\begin{array}{*{20}{c}}{{A_{\bf{1}}}}&{{A_{\bf{2}}}}\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}{{B_{\bf{1}}}}&{{B_{\bf{2}}}}\end{array}} \right]\), with \({A_{\bf{1}}}\) and \({A_{\bf{2}}}\) the same sizes as \({B_{\bf{1}}}\) and \({B_{\bf{2}}}\), respectively then \(A + B = \left[ {\begin{array}{*{20}{c}}{{A_1} + {B_1}}&{{A_{\bf{2}}} + {B_{\bf{2}}}}\end{array}} \right]\).

b. If \(A = \left[ {\begin{array}{*{20}{c}}{{A_{{\bf{11}}}}}&{{A_{{\bf{12}}}}}\\{{A_{{\bf{21}}}}}&{{A_{{\bf{22}}}}}\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}{{B_1}}\\{{B_{\bf{2}}}}\end{array}} \right]\), then the partitions of \(A\) and \(B\) are comfortable for block multiplication.

Show that \({I_n}A = A\) when \(A\) is \(m \times n\) matrix. (Hint: Use the (column) definition of \({I_n}A\).)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free