Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let C be an \(n \times n\) consumption matrix whose column sums are less than 1. Let x be the production vector that satisfies a final demand d, and let \[\Delta {\mathop{\rm x}\nolimits} \] be a production vector that satisfies a different final demand \[\Delta {\mathop{\rm d}\nolimits} \].

a. Show that if the final demand changes from d to \[{\mathop{\rm d}\nolimits} + \Delta {\mathop{\rm d}\nolimits} \], then the new production level must be \[{\mathop{\rm x}\nolimits} + \Delta {\mathop{\rm x}\nolimits} \]. Thus \[\Delta {\mathop{\rm x}\nolimits} \] gives the amounts by which production must change in order to accommodate the change \[\Delta {\mathop{\rm d}\nolimits} \] in demand.

b. Let \[\Delta {\mathop{\rm d}\nolimits} \] be the vector in \({\mathbb{R}^n}\) with as the first entry and 0’s elsewhere. Explain why the corresponding production \[\Delta {\mathop{\rm x}\nolimits} \] is the first column of \({\left( {I - C} \right)^{ - 1}}\). This shows that the first column of \({\left( {I - C} \right)^{ - 1}}\) gives the amounts the various sectors must produce to satisfy an increase of 1 unit in the final demand for output from sector 1.

Short Answer

Expert verified
  1. It is proved that \({\mathop{\rm x}\nolimits} + \Delta {\mathop{\rm x}\nolimits} \) is the new production level that corresponds to the final demand of \({\mathop{\rm d}\nolimits} + \Delta {\mathop{\rm d}\nolimits} \).
  2. It is proved that the production vector \[\Delta {\mathop{\rm x}\nolimits} \] is the first column of \({\left( {I - C} \right)^{ - 1}}\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Show that the new production level must be \[{\mathop{\rm x}\nolimits}  + \Delta {\mathop{\rm x}\nolimits} \]

Let x be a production vector that satisfies the final demand d, and \[\Delta {\mathop{\rm x}\nolimits} \] be a production vector that satisfies a different final demand \(\Delta {\mathop{\rm d}\nolimits} \).

It is given that \(\left( {I - C} \right){\mathop{\rm x}\nolimits} = {\mathop{\rm d}\nolimits} \) and \(\left( {I - C} \right)\Delta {\mathop{\rm x}\nolimits} = \Delta {\mathop{\rm d}\nolimits} \).

The new production level of \({\mathop{\rm x}\nolimits} + \Delta {\mathop{\rm x}\nolimits} \) is shown below:

\(\begin{array}{c}\left( {I - C} \right)\left( {{\mathop{\rm x}\nolimits} + \Delta {\mathop{\rm x}\nolimits} } \right) = \left( {I - C} \right){\mathop{\rm x}\nolimits} + \left( {I - C} \right)\Delta {\mathop{\rm x}\nolimits} \\ = {\mathop{\rm d}\nolimits} + \Delta {\mathop{\rm d}\nolimits} \end{array}\)

Thus, it is proved that \({\mathop{\rm x}\nolimits} + \Delta {\mathop{\rm x}\nolimits} \) is the new production level that corresponds to a final demand of \({\mathop{\rm d}\nolimits} + \Delta {\mathop{\rm d}\nolimits} \).

02

Explain that the production vector \(\Delta {\mathop{\rm x}\nolimits} \) is the first column of \({\left( {I - C} \right)^{ - 1}}\)

Theorem 11states that C is the consumption matrix for an economy. Let d be the final demand. If C and d have non-negative entries and each column sum of C is less than 1, then \({\left( {I - C} \right)^{ - 1}}\) exists. Also, the production vector \(x = {\left( {I - C} \right)^{ - 1}}{\mathop{\rm d}\nolimits} \) has non-negative entries and is the unique solution of \(x = Cx + {\mathop{\rm d}\nolimits} \).

Let \[\Delta {\mathop{\rm d}\nolimits} \] be the vector in \({\mathbb{R}^n}\) as the first entry and as zero elsewhere.

\[\Delta {\mathop{\rm d}\nolimits} \]is the first column of I. So, the production vector \[\Delta {\mathop{\rm x}\nolimits} \] is the first column of \({\left( {I - C} \right)^{ - 1}}\) because \(\Delta {\mathop{\rm x}\nolimits} = {\left( {I - C} \right)^{ - 1}}\Delta {\mathop{\rm d}\nolimits} \).

Thus, it is proved that the production vector \[\Delta {\mathop{\rm x}\nolimits} \] is the first column of \({\left( {I - C} \right)^{ - 1}}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free