Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exercises 1-4 refer to an economy that is divided into three sectors - manufacturing, agriculture, and services. For each unit of output, manufacturing requires .10 unit from other companies in that sector, .30 unit from services. For each unit of output, agriculture uses .20 unit of its own output, .60 unit from manufacturing, and .10 unit from services. For each unit of output, the services sector consumes .10 unit from services, .60 unit from manufacturing, but no agricultural products.

1. Construct the consumption matrix for this economy, and determine what intermediate demands are created if agriculture plans to produce 100 units.

Short Answer

Expert verified

The intermediate demand is \(Cx = \left[ {\begin{array}{*{20}{c}}{60}\\{20}\\{10}\end{array}} \right]\).

Step by step solution

01

Construct the consumption matrix for the economy

The important point is that each column represents the unit consumption vector for the corresponding vector. When you order sector manufacturing, agriculture, and services, the consumption matrix is

\(C = \left[ {\begin{array}{*{20}{c}}{.10}&{.60}&{.60}\\{.30}&{.20}&0\\{.30}&{.10}&{.10}\end{array}} \right]\).

02

Determine the intermediate demand created

The total intermediate demand from all three sectors is

\(\begin{array}{c}\left\{ {intermediate demand} \right\} = {x_1}{c_1} + {x_2}{c_2} + {x_3}{c_3}\\ = Cx.\end{array}\)

Here, C is theconsumption matrix\(\left[ {\begin{array}{*{20}{c}}{{c_1}}&{{c_2}}&{{c_3}}\end{array}} \right]\).

\(Cx\)represents the intermediate demands produced by the production vector x. If agriculture plans to produce 100 units, then the intermediate vector is

\(\begin{array}{c}Cx = \left[ {\begin{array}{*{20}{c}}{.10}&{.60}&{.60}\\{.30}&{.20}&0\\{.30}&{.10}&{.10}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}0\\{100}\\0\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{0.1 \times 0 + 0.6 \times 100 + 0.6 \times 0}\\{0.3 \times 0 + 0.2 \times 100 + 0 \times 0}\\{0.3 \times 0 + 0.1 \times 100 + 0.1 \times 0}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{0 + 60 + 0}\\{0 + 20 + 0}\\{0 + 10 + 0}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{60}\\{20}\\{10}\end{array}} \right].\end{array}\)

Thus, the intermediate demand is \(Cx = \left[ {\begin{array}{*{20}{c}}{60}\\{20}\\{10}\end{array}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

When a deep space probe launched, corrections may be necessary to place the probe on a precisely calculated trajectory. Radio elementary provides a stream of vectors, \({{\bf{x}}_{\bf{1}}},....,{{\bf{x}}_k}\), giving information at different times about how the probe’s position compares with its planned trajectory. Let \({X_k}\) be the matrix \(\left[ {{x_{\bf{1}}}.....{x_k}} \right]\). The matrix \({G_k} = {X_k}X_k^T\) is computed as the radar data are analyzed. When \({x_{k + {\bf{1}}}}\) arrives, a new \({G_{k + {\bf{1}}}}\) must be computed. Since the data vector arrive at high speed, the computational burden could be serve. But partitioned matrix multiplication helps tremendously. Compute the column-row expansions of \({G_k}\) and \({G_{k + {\bf{1}}}}\) and describe what must be computed in order to update \({G_k}\) to \({G_{k + {\bf{1}}}}\).

Give a formula for \({\left( {ABx} \right)^T}\), where \({\bf{x}}\) is a vector and \(A\) and \(B\) are matrices of appropriate sizes.

Let \(A = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}&{\bf{5}}\\{ - {\bf{3}}}&{\bf{1}}\end{aligned}} \right)\) and \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}&{ - {\bf{5}}}\\{\bf{3}}&k\end{aligned}} \right)\). What value(s) of \(k\), if any will make \(AB = BA\)?

Suppose \({A_{{\bf{11}}}}\) is invertible. Find \(X\) and \(Y\) such that

\[\left[ {\begin{array}{*{20}{c}}{{A_{{\bf{11}}}}}&{{A_{{\bf{12}}}}}\\{{A_{{\bf{21}}}}}&{{A_{{\bf{22}}}}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\X&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{A_{{\bf{11}}}}}&{\bf{0}}\\{\bf{0}}&S\end{array}} \right]\left[ {\begin{array}{*{20}{c}}I&Y\\{\bf{0}}&I\end{array}} \right]\]

Where \(S = {A_{{\bf{22}}}} - {A_{21}}A_{{\bf{11}}}^{ - {\bf{1}}}{A_{{\bf{12}}}}\). The matrix \(S\) is called the Schur complement of \({A_{{\bf{11}}}}\). Likewise, if \({A_{{\bf{22}}}}\) is invertible, the matrix \({A_{{\bf{11}}}} - {A_{{\bf{12}}}}A_{{\bf{22}}}^{ - {\bf{1}}}{A_{{\bf{21}}}}\) is called the Schur complement of \({A_{{\bf{22}}}}\). Such expressions occur frequently in the theory of systems engineering, and elsewhere.

In Exercises 1 and 2, compute each matrix sum or product if it is defined. If an expression is undefined, explain why. Let

\(A = \left( {\begin{aligned}{*{20}{c}}2&0&{ - 1}\\4&{ - 5}&2\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}7&{ - 5}&1\\1&{ - 4}&{ - 3}\end{aligned}} \right)\), \(C = \left( {\begin{aligned}{*{20}{c}}1&2\\{ - 2}&1\end{aligned}} \right)\), \(D = \left( {\begin{aligned}{*{20}{c}}3&5\\{ - 1}&4\end{aligned}} \right)\) and \(E = \left( {\begin{aligned}{*{20}{c}}{ - 5}\\3\end{aligned}} \right)\)

\(A + 2B\), \(3C - E\), \(CB\), \(EB\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free