Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

[M] Use equation (6) to solve the problem in Exercise 13. Set \({{\bf{x}}^{\left( {\bf{0}} \right)}} = {\bf{d}}\), and for \[k = {\bf{1}},\,{\bf{2}},\,....\] compute \({{\bf{x}}^{\left( k \right)}} = {\bf{d}} + C{{\bf{x}}^{\left( {k - {\bf{1}}} \right)}}\). How many steps are needed to obtain the answer in Exercise 13 to four significant figures?

Short Answer

Expert verified

12 steps

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Write the augmented matrix

The augmented matrix is shown below:

\(A = \left[ {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{.8412}&{ - 0.0064}&{ - 0.0025}&{ - 0.0304}&{ - 0.0014}&{ - 0.0083}&{ - 0.1594}\\{ - .0057}&{0.7355}&{ - 0.0436}&{ - 0.0099}&{ - 0.0083}&{ - 0.0201}&{ - 0.3413}\\{ - .0264}&{ - 0.1506}&{0.6443}&{ - 0.0139}&{ - 0.0142}&{ - 0.0070}&{ - 0.0236}\\{ - .3299}&{ - 0.0565}&{ - 0.0495}&{0.6364}&{ - 0.0204}&{ - 0.0483}&{ - 0.0649}\\{ - .0089}&{ - 0.0081}&{ - 0.0333}&{ - 0.0295}&{0.6588}&{ - 0.0237}&{ - 0.0020}\\{ - 0.1190}&{ - 0.0901}&{ - 0.0996}&{ - 0.1260}&{ - 0.1722}&{0.7632}&{ - 0.3369}\\{ - 0.0063}&{ - 0.0126}&{ - 0.0196}&{ - 0.0098}&{ - 0.0064}&{ - 0.0132}&{0.9988}\end{array}}&{\begin{array}{*{20}{c}}{74000}\\{56000}\\{10500}\\{25000}\\{17500}\\{196000}\\{5000}\end{array}}\end{array}\,} \right]\)

02

Write the iterations

\({{\bf{x}}^{\left( 0 \right)}} = \left( {74000.0,\,56000.0,\,10500.0,\,25000.0,\,17500.0,\,196000.0,\,5000.0} \right)\)

\({{\bf{x}}^{\left( 1 \right)}} = \left( {89344.2,\,77730.5,\,26708.1,\,72334.7,\,30325.6,\,265158.2,\,9327.8} \right)\)

\({{\bf{x}}^{\left( 2 \right)}} = \left( {94681.2,\;87714.5,\;37577.3,\;100520.5,\;38598.0,\;296563.8,\;11480.0} \right)\)

\({{\bf{x}}^{\left( 3 \right)}} = \left( {97091.9,\;92573.1,\;43867.8,\;115457.0,\;43491.0,\;312319.0,\;12598.8} \right)\)

\({{\bf{x}}^{\left( 4 \right)}} = \left( {98291.6,\;95033.2,\;47314.5,\;123202.5,\;46247.0,\;320502.4,\;13185.5} \right)\)

\({{\bf{x}}^{\left( 5 \right)}} = \left( {98907.2,\;96305.3,\;49160.6,\;127213.7,\;47756.4,\;324796.1,\;13655.9} \right)\)

\({{\bf{x}}^{\left( 6 \right)}} = \left( {99226.6,\;96969.6,\;50139.6,\;129296.7,\;48569.3,\;327053.8,\;13655.9} \right)\)

\({{\bf{x}}^{\left( 7 \right)}} = \left( {99393.1,\;97317.8,\;50928.7,\;130948.0,\;49002.8,\;328240.9,\;13741.1} \right)\)

\({{\bf{x}}^{\left( 8 \right)}} = \left( {99480.0,\;97500.7,\;50928.7,\;130948.0,\;49232.5,\;328864.7,\;13785.9} \right)\)

\({{\bf{x}}^{\left( 9 \right)}} = \left( {99525.5,\;97647.2,\;51147.2,\;131399.2,\;49417.7,\;329364.4,\;13821.7} \right)\)

\({{\bf{x}}^{\left( {10} \right)}} = \left( {99561.9,\;97673.7,\;51186.8,\;131480.4,\;49451.3,\;329454.7,\;13828.2} \right)\)

\({{\bf{x}}^{\left( {11} \right)}} = \left( {99561.9,\;97687.6,\;51186.8,\;131480.4,\;49451.3,\;329502.1,\;13831.6} \right)\)

\({{\bf{x}}^{\left( {12} \right)}} = \left( {99568.4,\;97687.6,\;51207.5,\;131523.0,\;49469.0,\;329502.1,\;13831.6} \right)\)

So, the answer to Exercise 13 is obtained in 12 steps.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]

5. \[\left[ {\begin{array}{*{20}{c}}A&B\\C&{\bf{0}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\X&Y\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\bf{0}}&I\\Z&{\bf{0}}\end{array}} \right]\]

In Exercises 1 and 2, compute each matrix sum or product if it is defined. If an expression is undefined, explain why. Let

\(A = \left( {\begin{aligned}{*{20}{c}}2&0&{ - 1}\\4&{ - 5}&2\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}7&{ - 5}&1\\1&{ - 4}&{ - 3}\end{aligned}} \right)\), \(C = \left( {\begin{aligned}{*{20}{c}}1&2\\{ - 2}&1\end{aligned}} \right)\), \(D = \left( {\begin{aligned}{*{20}{c}}3&5\\{ - 1}&4\end{aligned}} \right)\) and \(E = \left( {\begin{aligned}{*{20}{c}}{ - 5}\\3\end{aligned}} \right)\)

\( - 2A\), \(B - 2A\), \(AC\), \(CD\).

Show that if ABis invertible, so is B.

Give a formula for \({\left( {ABx} \right)^T}\), where \({\bf{x}}\) is a vector and \(A\) and \(B\) are matrices of appropriate sizes.

Suppose the transfer function W(s) in Exercise 19 is invertible for some s. It can be showed that the inverse transfer function \(W{\left( s \right)^{ - {\bf{1}}}}\), which transforms outputs into inputs, is the Schur complement of \(A - BC - s{I_n}\) for the matrix below. Find the Sachur complement. See Exercise 15.

\(\left[ {\begin{array}{*{20}{c}}{A - BC - s{I_n}}&B\\{ - C}&{{I_m}}\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free