Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(C\) be a consumptions matrix such that \({C^m} \to {\bf{0}}\) as \(m \to \infty \), and for \(m = {\bf{1}},{\bf{2}},......\) let \[{D_m} = I + C + .... + {C^m}\]. Find a difference equation that relates \({D_m}\) and \({D_{m + {\bf{1}}}}\) and thereby obtain an iterative procedure for computing formula (8) for \({\left( {I - C} \right)^{ - {\bf{1}}}}\).

Short Answer

Expert verified

\({D_{m + 1}} = I + C{D_m}\)

Step by step solution

01

Find the expression for \({D_{m + {\bf{1}}}}\)

\(\begin{array}{c}{D_{m + 1}} = I + C + {C^2} + .... + {C^{m + 1}}\\ = I + C\left( {I + C + .... + {C^m}} \right)\end{array}\)

02

Reduce \({D_{m + {\bf{1}}}}\) in the form of \({D_m}\)

Substitute the value of \({D_m}\) in theequation \({D_{m + 1}} = I + C\left( {I + C + .... + {C^m}} \right)\).

\(\begin{array}{c}{D_{m + 1}} = I + C\left( {I + C + .... + {C^m}} \right)\\ = I + C{D_m}\end{array}\)

So, the relation between \({D_{m + 1}}\) and \({D_m}\) is \({D_{m + 1}} = I + C{D_m}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]

6. \[\left[ {\begin{array}{*{20}{c}}X&{\bf{0}}\\Y&Z\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&{\bf{0}}\\B&C\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\{\bf{0}}&I\end{array}} \right]\]

Let \({{\bf{r}}_1} \ldots ,{{\bf{r}}_p}\) be vectors in \({\mathbb{R}^{\bf{n}}}\), and let Qbe an\(m \times n\)matrix. Write the matrix\(\left( {\begin{aligned}{*{20}{c}}{Q{{\bf{r}}_1}}& \cdots &{Q{{\bf{r}}_p}}\end{aligned}} \right)\)as a productof two matrices (neither of which is an identity matrix).

In Exercise 9 mark each statement True or False. Justify each answer.

9. a. In order for a matrix B to be the inverse of A, both equations \(AB = I\) and \(BA = I\) must be true.

b. If A and B are \(n \times n\) and invertible, then \({A^{ - {\bf{1}}}}{B^{ - {\bf{1}}}}\) is the inverse of \(AB\).

c. If \(A = \left( {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right)\) and \(ab - cd \ne {\bf{0}}\), then A is invertible.

d. If A is an invertible \(n \times n\) matrix, then the equation \(Ax = b\) is consistent for each b in \({\mathbb{R}^{\bf{n}}}\).

e. Each elementary matrix is invertible.

In Exercise 10 mark each statement True or False. Justify each answer.

10. a. A product of invertible \(n \times n\) matrices is invertible, and the inverse of the product of their inverses in the same order.

b. If A is invertible, then the inverse of \({A^{ - {\bf{1}}}}\) is A itself.

c. If \(A = \left( {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right)\) and \(ad = bc\), then A is not invertible.

d. If A can be row reduced to the identity matrix, then A must be invertible.

e. If A is invertible, then elementary row operations that reduce A to the identity \({I_n}\) also reduce \({A^{ - {\bf{1}}}}\) to \({I_n}\).

Let \(A = \left( {\begin{aligned}{*{20}{c}}3&{ - 6}\\{ - 1}&2\end{aligned}} \right)\). Construct a \({\bf{2}} \times {\bf{2}}\) matrix Bsuch that ABis the zero matrix. Use two different nonzero columns for B.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free