Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The consumption matrix C for the U.S. economy in 1972 has the property that every entryin the matrix \({\left( {I - C} \right)^{ - 1}}\) is nonzero (and positive). What does that say about the effect of raising the demand for the output of just one sector of the economy?

Short Answer

Expert verified

An increase in the final demand for any sector will increase the demand for all sectors.

Step by step solution

01

State the \(\left( {i,j} \right)\) entry in \({\left( {I - C} \right)^{ - 1}}\)

From Exercise 8, the \(\left( {i,j} \right)\) entry in \({\left( {I - C} \right)^{ - 1}}\) corresponds to the effect on the production of sector \(i\) if the final demand for the output of sector \(j\) rises by one unit.

02

Find the effect of raising the demand for the output of one sector

An increase in the final demand for any sector increases the production of all sectors because all the entries are positive.

Therefore, an increase in the final demand for any sector increases the demand for all sectors.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let Abe an invertible \(n \times n\) matrix, and let \(B\) be an \(n \times p\) matrix. Explain why \({A^{ - 1}}B\) can be computed by row reduction: If\(\left( {\begin{aligned}{*{20}{c}}A&B\end{aligned}} \right) \sim ... \sim \left( {\begin{aligned}{*{20}{c}}I&X\end{aligned}} \right)\), then \(X = {A^{ - 1}}B\).

If Ais larger than \(2 \times 2\), then row reduction of \(\left( {\begin{aligned}{*{20}{c}}A&B\end{aligned}} \right)\) is much faster than computing both \({A^{ - 1}}\) and \({A^{ - 1}}B\).

Suppose a linear transformation \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) has the property that \(T\left( {\mathop{\rm u}\nolimits} \right) = T\left( {\mathop{\rm v}\nolimits} \right)\) for some pair of distinct vectors u and v in \({\mathbb{R}^n}\). Can Tmap \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\)? Why or why not?

Let \(A = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}&{\bf{5}}\\{ - {\bf{3}}}&{\bf{1}}\end{aligned}} \right)\) and \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}&{ - {\bf{5}}}\\{\bf{3}}&k\end{aligned}} \right)\). What value(s) of \(k\), if any will make \(AB = BA\)?

Suppose \(AD = {I_m}\) (the \(m \times m\) identity matrix). Show that for any b in \({\mathbb{R}^m}\), the equation \(A{\mathop{\rm x}\nolimits} = {\mathop{\rm b}\nolimits} \) has a solution. (Hint: Think about the equation \(AD{\mathop{\rm b}\nolimits} = {\mathop{\rm b}\nolimits} \).) Explain why Acannot have more rows than columns.

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]

5. \[\left[ {\begin{array}{*{20}{c}}A&B\\C&{\bf{0}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\X&Y\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\bf{0}}&I\\Z&{\bf{0}}\end{array}} \right]\]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free