Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Verify the boxed statement preceding Example 1 i.e., Let A and B be square matrices. If \[AB = I\], then Aand B are both invertible, with \[B = {A^{ - {\bf{1}}}}\] and \[A = {B^{ - {\bf{1}}}}\].

Short Answer

Expert verified

Square matrices A and B are both invertible with \[B = {A^{ - 1}}\] and \[A = {B^{ - 1}}\].

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Use the inverse matrix theorem

Given that \[AB = I\]. Then A is invertible based on statements (a) and (k) of the inverse matrix theorem.

02

Use the fact of the invertible matrix

\[{A^{ - 1}}\]exists.

Multiply by \[{A^{ - 1}}\] on both sides of \[AB = I\].

\[\begin{array}{c}{A^{ - 1}}AB = {A^{ - 1}}I\\IB = {A^{ - 1}}\\B = {A^{ - 1}}\end{array}\]

This implies B is invertible. The inverse of B is

\[\begin{array}{c}{B^{ - 1}} = {\left( {{A^{ - 1}}} \right)^{ - 1}}\\ = A.\end{array}\]

03

Draw a conclusion

Hence, A and B are both invertible with\[B = {A^{ - 1}}\]and\[A = {B^{ - 1}}\].

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If Ais an \(n \times n\) matrix and the equation \(A{\bf{x}} = {\bf{b}}\) has more than one solution for some b, then the transformation \({\bf{x}}| \to A{\bf{x}}\) is not one-to-one. What else can you say about this transformation? Justify your answer.

A useful way to test new ideas in matrix algebra, or to make conjectures, is to make calculations with matrices selected at random. Checking a property for a few matrices does not prove that the property holds in general, but it makes the property more believable. Also, if the property is actually false, you may discover this when you make a few calculations.

37. Construct a random \({\bf{4}} \times {\bf{4}}\) matrix Aand test whether \(\left( {A + I} \right)\left( {A - I} \right) = {A^2} - I\). The best way to do this is to compute \(\left( {A + I} \right)\left( {A - I} \right) - \left( {{A^2} - I} \right)\) and verify that this difference is the zero matrix. Do this for three random matrices. Then test \(\left( {A + B} \right)\left( {A - B} \right) = {A^2} - {B^{\bf{2}}}\) the same way for three pairs of random \({\bf{4}} \times {\bf{4}}\) matrices. Report your conclusions.

Prove Theorem 2(d). (Hint: The \(\left( {i,j} \right)\)- entry in \(\left( {rA} \right)B\) is \(\left( {r{a_{i1}}} \right){b_{1j}} + ... + \left( {r{a_{in}}} \right){b_{nj}}\).)

[M] For block operations, it may be necessary to access or enter submatrices of a large matrix. Describe the functions or commands of your matrix program that accomplish the following tasks. Suppose A is a \(20 \times 30\) matrix.

  1. Display the submatrix of Afrom rows 15 to 20 and columns 5 to 10.
  2. Insert a \(5 \times 10\) matrix B into A, beginning at row 10 and column 20.
  3. Create a \(50 \times 50\) matrix of the form \(B = \left[ {\begin{array}{*{20}{c}}A&0\\0&{{A^T}}\end{array}} \right]\).

[Note: It may not be necessary to specify the zero blocks in B.]

In the rest of this exercise set and in those to follow, you should assume that each matrix expression is defined. That is, the sizes of the matrices (and vectors) involved match appropriately.

Let \(A = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}&{ - {\bf{1}}}\\{\bf{5}}&{ - {\bf{2}}}\end{aligned}} \right)\). Compute \({\bf{3}}{I_{\bf{2}}} - A\) and \(\left( {{\bf{3}}{I_{\bf{2}}}} \right)A\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free