Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question 25: Without using row reduction, find the inverse of \(A = \left[ {\begin{array}{*{20}{c}}1&2&0&0&0\\3&5&0&0&0\\0&0&2&0&0\\0&0&0&7&8\\0&0&0&5&6\end{array}} \right]\).

Short Answer

Expert verified

The inverse of Ais \({A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}{ - 5}&2&0&0&0\\3&{ - 1}&0&0&0\\0&0&{.5}&0&0\\0&0&0&3&{ - 4}\\0&0&0&{ - 2.5}&{3.5}\end{array}} \right]\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Step 1:Show partition Aas a \(2 \times 2\) block diagonal matrix

Consider the partition of A as the\(2 \times 2\) block diagonal matrix shown below.So, the \(\left( {2,2} \right)\)-block is a block-diagonal matrix.

\(\begin{gathered}A = \left[ {\begin{array}{*{20}{c}} 1&2& & 0&0&0 \\ 3&5& & 0&0&0 \\ \hline 0&0& & 2&0&0 \\ 0&0& & 0&7&8 \\ 0&0& & 0&5&6 \end{array}} \right] \\ = \left[ {\begin{array}{*{20}{c}} {{A_{11}}}& & 0 \\ \hline 0&& {{A_{22}}} \end{array}} \right] \\ \end{gathered} \)

Here,{A_{22}} = \(\left[ {\begin{array}{*{20}{c}}2& & 0&0 \\ \hline0& & 7&8 \\ 0& & 5&6 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 2&0 \\ 0&B \end{array}} \right]\)

.

It is observed that \(B\) is invertible, and the inverse of Bis shown below.

\(\begin{array}{c}{B^{ - 1}} = \frac{1}{2}\left[ {\begin{array}{*{20}{c}}6&{ - 8}\\{ - 5}&7\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}3&{ - 4}\\{ - 2.5}&{3.5}\end{array}} \right]\end{array}\)

Exercise 13 shows that the block diagonal matrix \({A_{22}}\) is invertible.

02

Determine the inverse of A

It is observed that \({A_{11}}\) is also invertible.The inverse of \({A_{11}}\) is shown below.

\(\begin{array}{c}{A_{11}} = \frac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}5&{ - 2}\\{ - 3}&1\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{ - 5}&2\\3&{ - 1}\end{array}} \right]\end{array}\)

From exercise 13,\(A\)itself is invertible, and the inverse of Ais block diagonal.

\(\begin{gathered} {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}} {A_{11}^{ - 1}}&0 \\ 0&{A_{22}^{ - 1}} \end{array}} \right] \\ = \left[ {\begin{array}{*{20}{c}}{ - 5}&2& & {}&{}&{} \\ 3&{ - 1}& & {}&{\begin{array}{*{20}{c}}0 \\ {} \end{array}}&{} \\ \hline{}&{}& & {.5}&0&0 \\ {}&{\begin{array}{*{20}{c}}0&{} \end{array}}& & 0&3&{ - 4} \\ {}&{}& & 0&{ - 2.5}&{3.5} \end{array}} \right] \\ = \left[ {\begin{array}{*{20}{c}} { - 5}&2&0&0&0 \\ 3&{ - 1}&0&0&0 \\ 0&0&{.5}&0&0 \\ 0&0&0&3&{ - 4} \\ 0&0&0&{ - 2.5}&{3.5} \end{array}} \right] \\ \end{gathered}\)

Thus, the inverse of Ais \({A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}{ - 5}&2&0&0&0\\3&{ - 1}&0&0&0\\0&0&{.5}&0&0\\0&0&0&3&{ - 4}\\0&0&0&{ - 2.5}&{3.5}\end{array}} \right]\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(X\) be \(m \times n\) data matrix such that \({X^T}X\) is invertible., and let \(M = {I_m} - X{\left( {{X^T}X} \right)^{ - {\bf{1}}}}{X^T}\). Add a column \({x_{\bf{0}}}\) to the data and form

\(W = \left[ {\begin{array}{*{20}{c}}X&{{x_{\bf{0}}}}\end{array}} \right]\)

Compute \({W^T}W\). The \(\left( {{\bf{1}},{\bf{1}}} \right)\) entry is \({X^T}X\). Show that the Schur complement (Exercise 15) of \({X^T}X\) can be written in the form \({\bf{x}}_{\bf{0}}^TM{{\bf{x}}_{\bf{0}}}\). It can be shown that the quantity \({\left( {{\bf{x}}_{\bf{0}}^TM{{\bf{x}}_{\bf{0}}}} \right)^{ - {\bf{1}}}}\) is the \(\left( {{\bf{2}},{\bf{2}}} \right)\)-entry in \({\left( {{W^T}W} \right)^{ - {\bf{1}}}}\). This entry has a useful statistical interpretation, under appropriate hypotheses.

In the study of engineering control of physical systems, a standard set of differential equations is transformed by Laplace transforms into the following system of linear equations:

\(\left[ {\begin{array}{*{20}{c}}{A - s{I_n}}&B\\C&{{I_m}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\bf{x}}\\{\bf{u}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{y}}\end{array}} \right]\)

Where \(A\) is \(n \times n\), \(B\) is \(n \times m\), \(C\) is \(m \times n\), and \(s\) is a variable. The vector \({\bf{u}}\) in \({\mathbb{R}^m}\) is the “input” to the system, \({\bf{y}}\) in \({\mathbb{R}^m}\) is the “output” and \({\bf{x}}\) in \({\mathbb{R}^n}\) is the “state” vector. (Actually, the vectors \({\bf{x}}\), \({\bf{u}}\) and \({\bf{v}}\) are functions of \(s\), but we suppress this fact because it does not affect the algebraic calculations in Exercises 19 and 20.)

The inverse of \(\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}&{\bf{0}}\\C&I&{\bf{0}}\\A&B&I\end{array}} \right]\) is \(\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}&{\bf{0}}\\Z&I&{\bf{0}}\\X&Y&I\end{array}} \right]\). Find X, Y, and Z.

2. Find the inverse of the matrix \(\left( {\begin{aligned}{*{20}{c}}{\bf{3}}&{\bf{2}}\\{\bf{7}}&{\bf{4}}\end{aligned}} \right)\).

Prove Theorem 2(d). (Hint: The \(\left( {i,j} \right)\)- entry in \(\left( {rA} \right)B\) is \(\left( {r{a_{i1}}} \right){b_{1j}} + ... + \left( {r{a_{in}}} \right){b_{nj}}\).)

Let \(A = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}&{\bf{5}}\\{ - {\bf{3}}}&{\bf{1}}\end{aligned}} \right)\) and \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}&{ - {\bf{5}}}\\{\bf{3}}&k\end{aligned}} \right)\). What value(s) of \(k\), if any will make \(AB = BA\)?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free