Acan be written in the form \(A = LU\), where Lis an \(m \times m\) lower triangular matrix with 1s on the diagonal, and U is an \(m \times n\) echelon form of A.
When \(A = LU\), the equation \(Ax = b\) can be written as \(L\left( {Ux} \right) = {\mathop{\rm b}\nolimits} \).
Write y for \(Ux\) and find x by solving the pair of equations
\(\begin{array}{l}Ly = b\\Ux = y.\end{array}\)
Here, \(L = \left[ {\begin{array}{*{20}{c}}1&0&0\\{ - 3}&1&0\\4&{ - 1}&1\end{array}} \right]{\rm{, }}U = \,\left[ {\begin{array}{*{20}{c}}2&{ - 1}&2\\0&{ - 3}&4\\0&0&1\end{array}} \right]{\rm{, }}b = \left[ {\begin{array}{*{20}{c}}1\\0\\4\end{array}} \right]\)
\(\left[ {\begin{array}{*{20}{c}}L&b\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&0&0&1\\{ - 3}&1&0&0\\4&{ - 1}&1&4\end{array}} \right]\)
Perform an elementary row operation to produce the row echelon form of the matrix.
At row two, multiply row one by 3 and add it to row two. At row three, multiply row one by 4 and subtract it from row three.
\( \sim \left[ {\begin{array}{*{20}{c}}1&0&0&1\\0&1&0&3\\0&{ - 1}&1&0\end{array}} \right]\)
At row three, multiply row two by 1 and add it to row three.
\( \sim \left[ {\begin{array}{*{20}{c}}1&0&0&1\\0&1&0&3\\0&0&1&3\end{array}} \right]\)
The arithmetic values take place only in column four.
Thus, \(y = \left[ {\begin{array}{*{20}{c}}1\\3\\3\end{array}} \right]\).