Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The solution to the steady-state heat flow problem for
the plate in the figure is approximated by the solution to the
equation\(A{\bf{x}} = {\bf{b}}\);where\(b = \left( {5,15,0,10,0,10,20,30} \right)\)and

\(A = \left[ {\begin{array}{*{20}{c}}4&{ - 1}&{ - 1}&{}&{}&{}&{}&{}\\{ - 1}&4&0&{ - 1}&{}&{}&{}&{}\\{ - 1}&0&4&{ - 1}&{ - 1}&{}&{}&{}\\{}&{ - 1}&{ - 1}&4&0&{ - 1}&{}&{}\\{}&{}&{ - 1}&0&4&{ - 1}&{ - 1}&{}\\{}&{}&{}&{ - 1}&{ - 1}&4&0&{ - 1}\\{}&{}&{}&{}&{ - 1}&0&4&{ - 1}\\{}&{}&{}&{}&{}&{ - 1}&{ - 1}&4\end{array}} \right]\)

(Refer to Exercise 33 of Section 1.1.) The missing entries in Aare zeros. The nonzero entries of A lie within a band along the main diagonal. Such band matricesoccur in a variety of applications and often are extremely large (with thousands of rows and columns but relatively narrow bands).

  1. Use the method of Example 2 to construct an LU factorization of A, and note that both factors are band matrices (with two nonzero diagonals below or above the main diagonal). Compute \(LU - A\) to check your work.
  1. Use the LU factorization to solve\(A{\bf{x}} = {\bf{b}}\).
  1. Obtain \({A^{ - {\bf{1}}}}\) and note that\({A^{ - {\bf{1}}}}\) is a dense matrix with no
    band structure. When Ais large, LandUcan be stored in
    much less space than\({A^{ - {\bf{1}}}}\). This fact is another reason for
    preferring the LU factorization of Ato \({A^{ - {\bf{1}}}}\) itself.

Short Answer

Expert verified

(a) The LU factorization is shown below:

\(L = \left[ {\begin{array}{*{20}{c}}1&0&0&0&0&0&0&0\\{ - .25}&1&0&0&0&0&0&0\\{ - .25}&{ - .0667}&1&0&0&0&0&0\\0&{ - .2667}&{ - .2857}&1&0&0&0&0\\0&0&{ - .2679}&{ - .0833}&1&0&0&0\\0&0&0&{ - .2917}&{.2921}&1&0&0\\0&0&0&0&{ - .2697}&{ - .0861}&1&0\\0&0&0&0&0&{ - .2948}&{ - .2931}&1\end{array}} \right]\)

\(U = \left[ {\begin{array}{*{20}{c}}4&{ - 1}&{ - 1}&0&0&0&0&0\\0&{3.75}&{ - .25}&{ - 1}&0&0&0&0\\0&0&{3.7333}&{ - 1.0667}&{ - 1}&0&0&0\\0&0&0&{3.4286}&{ - .2857}&{ - 1}&0&0\\0&0&0&0&{3.7083}&{ - 1.0833}&{ - 1}&0\\0&0&0&0&0&{3.3919}&{ - .2921}&{ - 1}\\0&0&0&0&0&0&{3.7052}&{ - 1.0861}\\0&0&0&0&0&0&0&{3.3868}\end{array}} \right]\)

(b) The solution is\({\bf{x}} = \left( {3.9569,{\rm{ }}6.5885,{\rm{ }}4.2392,{\rm{ }}7.3971,{\rm{ }}5.6029,{\rm{ }}8.7608,{\rm{ }}9.4115,{\rm{ }}12.0431} \right)\).

(c) The inverse is \({A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}{.2953}&{.0866}&{.0945}&{.0509}&{.0318}&{.0227}&{.0010}&{.0082}\\{.0866}&{.2953}&{.0509}&{.0945}&{.0227}&{.0318}&{.0082}&{.0100}\\{.0945}&{.0509}&{.3271}&{.1093}&{.1045}&{.0591}&{.0318}&{.0227}\\{.0509}&{.0945}&{.1093}&{.3271}&{.0591}&{.1045}&{.0227}&{.0318}\\{.0318}&{.0227}&{.1045}&{.0591}&{.3271}&{.1093}&{.0945}&{.0509}\\{.0227}&{.0318}&{.0591}&{.1045}&{.1093}&{.3271}&{.0509}&{.0945}\\{.0010}&{.0082}&{.0318}&{.0227}&{.0945}&{.0509}&{.2953}&{.0866}\\{.0082}&{.0100}&{.0227}&{.0318}&{.0509}&{.0945}&{.0866}&{.2953}\end{array}} \right]\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

(a) Step 1: State the LU factorization of matrix A

Consider the matrix shown below:

\(A = \left[ {\begin{array}{*{20}{c}}4&{ - 1}&{ - 1}&0&0&0&0&0\\{ - 1}&4&0&{ - 1}&0&0&0&0\\{ - 1}&0&4&{ - 1}&{ - 1}&0&0&0\\0&{ - 1}&{ - 1}&4&0&{ - 1}&0&0\\0&0&{ - 1}&0&4&{ - 1}&{ - 1}&0\\0&0&0&{ - 1}&{ - 1}&4&0&{ - 1}\\0&0&0&0&{ - 1}&0&4&{ - 1}\\0&0&0&0&0&{ - 1}&{ - 1}&4\end{array}} \right]\)

Use the following MATLAB command to obtain theLU factorization of the matrix:

\[ > > \left[ {\begin{array}{*{20}{c}}{\rm{L}}&{\rm{U}}\end{array}} \right] = {\rm{lu}}\left( {\rm{A}} \right)\]

The LU factorization is shown below:

\(L = \left[ {\begin{array}{*{20}{c}}1&0&0&0&0&0&0&0\\{ - .25}&1&0&0&0&0&0&0\\{ - .25}&{ - .0667}&1&0&0&0&0&0\\0&{ - .2667}&{ - .2857}&1&0&0&0&0\\0&0&{ - .2679}&{ - .0833}&1&0&0&0\\0&0&0&{ - .2917}&{.2921}&1&0&0\\0&0&0&0&{ - .2697}&{ - .0861}&1&0\\0&0&0&0&0&{ - .2948}&{ - .2931}&1\end{array}} \right]\)

\(U = \left[ {\begin{array}{*{20}{c}}4&{ - 1}&{ - 1}&0&0&0&0&0\\0&{3.75}&{ - .25}&{ - 1}&0&0&0&0\\0&0&{3.7333}&{ - 1.0667}&{ - 1}&0&0&0\\0&0&0&{3.4286}&{ - .2857}&{ - 1}&0&0\\0&0&0&0&{3.7083}&{ - 1.0833}&{ - 1}&0\\0&0&0&0&0&{3.3919}&{ - .2921}&{ - 1}\\0&0&0&0&0&0&{3.7052}&{ - 1.0861}\\0&0&0&0&0&0&0&{3.3868}\end{array}} \right]\)

Use the following MATLAB command to obtain the\(LU - A\)factorization of the matrix:

\[ > > LU - A\]

The output is shown below:

\(\begin{array}{c}LU - A = \left[ {\begin{array}{*{20}{c}}0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0\end{array}} \right]\\ = {\bf{0}}\end{array}\)

Thus, it is verified that \(LU = A\).

02

(b) Step 2: Solve the system of equations

Use the following MATLAB command to solve the system by using LU factorization:

\[\begin{array}{l} > > {\rm{b}} = \left[ {\begin{array}{*{20}{c}}5&{15}&0&{10}&0&{10}&{20}&{30}\end{array}} \right]\\ > > {\rm{X}} = {\rm{A}}\backslash {\rm{b}}'\end{array}\]

The solution is shown below:

\(X = \left[ {\begin{array}{*{20}{c}}{3.9569}\\{6.5885}\\{4.2392}\\{7.3971}\\{5.6029}\\{8.7608}\\{9.4115}\\{12.0431}\end{array}} \right]\)

Thus, the solution is

\({\bf{x}} = \left( {3.9569,{\rm{ }}6.5885,{\rm{ }}4.2392,{\rm{ }}7.3971,{\rm{ }}5.6029,{\rm{ }}8.7608,{\rm{ }}9.4115,{\rm{ }}12.0431} \right)\).

03

(c) Step 3: Find the inverse of the matrix

Use the following MATLAB command to obtain the inverse of matrixA:

\[ > > B = A\^ - 1\]

Theinverse obtained is shown below:

\({A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}{.2953}&{.0866}&{.0945}&{.0509}&{.0318}&{.0227}&{.0010}&{.0082}\\{.0866}&{.2953}&{.0509}&{.0945}&{.0227}&{.0318}&{.0082}&{.0100}\\{.0945}&{.0509}&{.3271}&{.1093}&{.1045}&{.0591}&{.0318}&{.0227}\\{.0509}&{.0945}&{.1093}&{.3271}&{.0591}&{.1045}&{.0227}&{.0318}\\{.0318}&{.0227}&{.1045}&{.0591}&{.3271}&{.1093}&{.0945}&{.0509}\\{.0227}&{.0318}&{.0591}&{.1045}&{.1093}&{.3271}&{.0509}&{.0945}\\{.0010}&{.0082}&{.0318}&{.0227}&{.0945}&{.0509}&{.2953}&{.0866}\\{.0082}&{.0100}&{.0227}&{.0318}&{.0509}&{.0945}&{.0866}&{.2953}\end{array}} \right]\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose block matrix \(A\) on the left side of (7) is invertible and \({A_{{\bf{11}}}}\) is invertible. Show that the Schur component \(S\) of \({A_{{\bf{11}}}}\) is invertible. [Hint: The outside factors on the right side of (7) are always invertible. Verify this.] When \(A\) and \({A_{{\bf{11}}}}\) are invertible, (7) leads to a formula for \({A^{ - {\bf{1}}}}\), using \({S^{ - {\bf{1}}}}\) \(A_{{\bf{11}}}^{ - {\bf{1}}}\), and the other entries in \(A\).

Show that if ABis invertible, so is B.

In Exercises 1 and 2, compute each matrix sum or product if it is defined. If an expression is undefined, explain why. Let

\(A = \left( {\begin{aligned}{*{20}{c}}2&0&{ - 1}\\4&{ - 5}&2\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}7&{ - 5}&1\\1&{ - 4}&{ - 3}\end{aligned}} \right)\), \(C = \left( {\begin{aligned}{*{20}{c}}1&2\\{ - 2}&1\end{aligned}} \right)\), \(D = \left( {\begin{aligned}{*{20}{c}}3&5\\{ - 1}&4\end{aligned}} \right)\) and \(E = \left( {\begin{aligned}{*{20}{c}}{ - 5}\\3\end{aligned}} \right)\)

\( - 2A\), \(B - 2A\), \(AC\), \(CD\).

Assume \(A - s{I_n}\) is invertible and view (8) as a system of two matrix equations. Solve the top equation for \({\bf{x}}\) and substitute into the bottom equation. The result is an equation of the form \(W\left( s \right){\bf{u}} = {\bf{y}}\), where \(W\left( s \right)\) is a matrix that depends upon \(s\). \(W\left( s \right)\) is called the transfer function of the system because it transforms the input \({\bf{u}}\) into the output \({\bf{y}}\). Find \(W\left( s \right)\) and describe how it is related to the partitioned system matrix on the left side of (8). See Exercise 15.

Suppose Tand Ssatisfy the invertibility equations (1) and (2), where T is a linear transformation. Show directly that Sis a linear transformation. [Hint: Given u, v in \({\mathbb{R}^n}\), let \[{\mathop{\rm x}\nolimits} = S\left( {\mathop{\rm u}\nolimits} \right),{\mathop{\rm y}\nolimits} = S\left( {\mathop{\rm v}\nolimits} \right)\]. Then \(T\left( {\mathop{\rm x}\nolimits} \right) = {\mathop{\rm u}\nolimits} \), \[T\left( {\mathop{\rm y}\nolimits} \right) = {\mathop{\rm v}\nolimits} \]. Why? Apply Sto both sides of the equation \(T\left( {\mathop{\rm x}\nolimits} \right) + T\left( {\mathop{\rm y}\nolimits} \right) = T\left( {{\mathop{\rm x}\nolimits} + y} \right)\). Also, consider \(T\left( {cx} \right) = cT\left( x \right)\).]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free