Chapter 2: Q2.5-31Q (page 93)
The solution to the steady-state heat flow problem for
the plate in the figure is approximated by the solution to the
equation\(A{\bf{x}} = {\bf{b}}\);where\(b = \left( {5,15,0,10,0,10,20,30} \right)\)and
\(A = \left[ {\begin{array}{*{20}{c}}4&{ - 1}&{ - 1}&{}&{}&{}&{}&{}\\{ - 1}&4&0&{ - 1}&{}&{}&{}&{}\\{ - 1}&0&4&{ - 1}&{ - 1}&{}&{}&{}\\{}&{ - 1}&{ - 1}&4&0&{ - 1}&{}&{}\\{}&{}&{ - 1}&0&4&{ - 1}&{ - 1}&{}\\{}&{}&{}&{ - 1}&{ - 1}&4&0&{ - 1}\\{}&{}&{}&{}&{ - 1}&0&4&{ - 1}\\{}&{}&{}&{}&{}&{ - 1}&{ - 1}&4\end{array}} \right]\)
(Refer to Exercise 33 of Section 1.1.) The missing entries in Aare zeros. The nonzero entries of A lie within a band along the main diagonal. Such band matricesoccur in a variety of applications and often are extremely large (with thousands of rows and columns but relatively narrow bands).
- Use the method of Example 2 to construct an LU factorization of A, and note that both factors are band matrices (with two nonzero diagonals below or above the main diagonal). Compute \(LU - A\) to check your work.
- Use the LU factorization to solve\(A{\bf{x}} = {\bf{b}}\).
- Obtain \({A^{ - {\bf{1}}}}\) and note that\({A^{ - {\bf{1}}}}\) is a dense matrix with no
band structure. When Ais large, LandUcan be stored in
much less space than\({A^{ - {\bf{1}}}}\). This fact is another reason for
preferring the LU factorization of Ato \({A^{ - {\bf{1}}}}\) itself.
Short Answer
(a) The LU factorization is shown below:
\(L = \left[ {\begin{array}{*{20}{c}}1&0&0&0&0&0&0&0\\{ - .25}&1&0&0&0&0&0&0\\{ - .25}&{ - .0667}&1&0&0&0&0&0\\0&{ - .2667}&{ - .2857}&1&0&0&0&0\\0&0&{ - .2679}&{ - .0833}&1&0&0&0\\0&0&0&{ - .2917}&{.2921}&1&0&0\\0&0&0&0&{ - .2697}&{ - .0861}&1&0\\0&0&0&0&0&{ - .2948}&{ - .2931}&1\end{array}} \right]\)
\(U = \left[ {\begin{array}{*{20}{c}}4&{ - 1}&{ - 1}&0&0&0&0&0\\0&{3.75}&{ - .25}&{ - 1}&0&0&0&0\\0&0&{3.7333}&{ - 1.0667}&{ - 1}&0&0&0\\0&0&0&{3.4286}&{ - .2857}&{ - 1}&0&0\\0&0&0&0&{3.7083}&{ - 1.0833}&{ - 1}&0\\0&0&0&0&0&{3.3919}&{ - .2921}&{ - 1}\\0&0&0&0&0&0&{3.7052}&{ - 1.0861}\\0&0&0&0&0&0&0&{3.3868}\end{array}} \right]\)
(b) The solution is\({\bf{x}} = \left( {3.9569,{\rm{ }}6.5885,{\rm{ }}4.2392,{\rm{ }}7.3971,{\rm{ }}5.6029,{\rm{ }}8.7608,{\rm{ }}9.4115,{\rm{ }}12.0431} \right)\).
(c) The inverse is \({A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}{.2953}&{.0866}&{.0945}&{.0509}&{.0318}&{.0227}&{.0010}&{.0082}\\{.0866}&{.2953}&{.0509}&{.0945}&{.0227}&{.0318}&{.0082}&{.0100}\\{.0945}&{.0509}&{.3271}&{.1093}&{.1045}&{.0591}&{.0318}&{.0227}\\{.0509}&{.0945}&{.1093}&{.3271}&{.0591}&{.1045}&{.0227}&{.0318}\\{.0318}&{.0227}&{.1045}&{.0591}&{.3271}&{.1093}&{.0945}&{.0509}\\{.0227}&{.0318}&{.0591}&{.1045}&{.1093}&{.3271}&{.0509}&{.0945}\\{.0010}&{.0082}&{.0318}&{.0227}&{.0945}&{.0509}&{.2953}&{.0866}\\{.0082}&{.0100}&{.0227}&{.0318}&{.0509}&{.0945}&{.0866}&{.2953}\end{array}} \right]\).