Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

30. Find a different factorization of the A in Exercise 29 i.e., \(A = \left( {\begin{aligned}{*{20}{c}}{{{\bf{4}} \mathord{\left/

{\vphantom {{\bf{4}} {\bf{3}}}} \right.

\kern-\nulldelimiterspace} {\bf{3}}}}&{ - {\bf{12}}}\\{{{ - {\bf{1}}} \mathord{\left/

{\vphantom {{ - {\bf{1}}} {\bf{4}}}} \right.

\kern-\nulldelimiterspace} {\bf{4}}}}&{\bf{3}}\end{aligned}} \right)\), and thereby design a different ladder network whose transfer matrix is A.

Short Answer

Expert verified

The different factorization of A in Exercise 29 is

\(A = \left( {\begin{aligned}{*{20}{c}}1&{ - {4 \mathord{\left/

{\vphantom {4 3}} \right.

\kern-\nulldelimiterspace} 3}}\\0&1\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 4}} \right.

\kern-\nulldelimiterspace} 4}}&1\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&{ - 8}\\0&1\end{aligned}} \right)\).

Thus, the ladder network, whose transfer matrix is A, is

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Design a ladder network

Construct a ladder network that is different from the network in Exercise 29.

02

Write the transfer matrices

Here, the first circuit is the series circuit with resistance \({R_1}\) , the second circuit is the shunt circuit with resistance \({R_2}\), and the last circuit is the series circuit with resistance \({R_3}\) , whose transfer matrices are \(\left( {\begin{aligned}{*{20}{c}}1&{ - {R_1}}\\0&1\end{aligned}} \right),\left( {\begin{aligned}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&1\end{aligned}} \right)\), and \(\left( {\begin{aligned}{*{20}{c}}1&{ - {R_3}}\\0&1\end{aligned}} \right)\), respectively.

03

Find the transfer matrix for the above ladder network

The transfer matrix for the ladder network is given by in the reverse order.

\(\begin{aligned}{c}\left( {\begin{aligned}{*{20}{c}}1&{ - {R_3}}\\0&1\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&1\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&{ - {R_1}}\\0&1\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}{1 + {{{R_3}} \mathord{\left/

{\vphantom {{{R_3}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&{ - {R_3}}\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&1\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&{ - {R_1}}\\0&1\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{1 + {{{R_3}} \mathord{\left/

{\vphantom {{{R_3}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&{ - {R_1} - {{{R_1}{R_3}} \mathord{\left/

{\vphantom {{{R_1}{R_3}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} - {R_3}}\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&{{{{R_1}} \mathord{\left/

{\vphantom {{{R_1}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} + 1}\end{aligned}} \right)\end{aligned}\)

04

Set matrix A, which is equal to the transfer matrix in step 2

\(\begin{aligned}{c}\left( {\begin{aligned}{*{20}{c}}{1 + {{{R_3}} \mathord{\left/

{\vphantom {{{R_3}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&{ - {R_1} - {{{R_1}{R_3}} \mathord{\left/

{\vphantom {{{R_1}{R_3}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} - {R_3}}\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&{{{{R_1}} \mathord{\left/

{\vphantom {{{R_1}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} + 1}\end{aligned}} \right) = A\\\left( {\begin{aligned}{*{20}{c}}{1 + {{{R_3}} \mathord{\left/

{\vphantom {{{R_3}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&{ - {R_1} - {{{R_1}{R_3}} \mathord{\left/

{\vphantom {{{R_1}{R_3}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} - {R_3}}\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&{{{{R_1}} \mathord{\left/

{\vphantom {{{R_1}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} + 1}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}{{4 \mathord{\left/

{\vphantom {4 3}} \right.

\kern-\nulldelimiterspace} 3}}&{ - 12}\\{{{ - 1} \mathord{\left/

{\vphantom {{ - 1} 4}} \right.

\kern-\nulldelimiterspace} 4}}&3\end{aligned}} \right)\end{aligned}\)

This implies that

\(\begin{aligned}{c}{{ - 1} \mathord{\left/

{\vphantom {{ - 1} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} = - {1 \mathord{\left/

{\vphantom {1 4}} \right.

\kern-\nulldelimiterspace} 4}\\{R_2} = 4\end{aligned}\)

\(\begin{aligned}{c}{{{R_1}} \mathord{\left/

{\vphantom {{{R_1}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} + 1 = 3\\{{{R_1}} \mathord{\left/

{\vphantom {{{R_1}} 4}} \right.

\kern-\nulldelimiterspace} 4} = 2\\{R_1} = 8\end{aligned}\)

\(\begin{aligned}{c}1 + {{{R_3}} \mathord{\left/

{\vphantom {{{R_3}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} = {4 \mathord{\left/

{\vphantom {4 3}} \right.

\kern-\nulldelimiterspace} 3}\\{{{R_3}} \mathord{\left/

{\vphantom {{{R_3}} 4}} \right.

\kern-\nulldelimiterspace} 4} = {1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}\\{R_3} = {4 \mathord{\left/

{\vphantom {4 3}} \right.

\kern-\nulldelimiterspace} 3}\end{aligned}\)

05

Conclusion

The different factorization of A in Exercise 29 is:

\(A = \left( {\begin{aligned}{*{20}{c}}1&{ - {4 \mathord{\left/

{\vphantom {4 3}} \right.

\kern-\nulldelimiterspace} 3}}\\0&1\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 4}} \right.

\kern-\nulldelimiterspace} 4}}&1\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&{ - 8}\\0&1\end{aligned}} \right)\)

Thus, the ladder network, whose transfer matrix is A, is

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free