\(\begin{aligned}{c}\left( {\begin{aligned}{*{20}{c}}{1 + {{{R_3}} \mathord{\left/
{\vphantom {{{R_3}} {{R_2}}}} \right.
\kern-\nulldelimiterspace} {{R_2}}}}&{ - {R_1} - {{{R_1}{R_3}} \mathord{\left/
{\vphantom {{{R_1}{R_3}} {{R_2}}}} \right.
\kern-\nulldelimiterspace} {{R_2}}} - {R_3}}\\{ - {1 \mathord{\left/
{\vphantom {1 {{R_2}}}} \right.
\kern-\nulldelimiterspace} {{R_2}}}}&{{{{R_1}} \mathord{\left/
{\vphantom {{{R_1}} {{R_2}}}} \right.
\kern-\nulldelimiterspace} {{R_2}}} + 1}\end{aligned}} \right) = A\\\left( {\begin{aligned}{*{20}{c}}{1 + {{{R_3}} \mathord{\left/
{\vphantom {{{R_3}} {{R_2}}}} \right.
\kern-\nulldelimiterspace} {{R_2}}}}&{ - {R_1} - {{{R_1}{R_3}} \mathord{\left/
{\vphantom {{{R_1}{R_3}} {{R_2}}}} \right.
\kern-\nulldelimiterspace} {{R_2}}} - {R_3}}\\{ - {1 \mathord{\left/
{\vphantom {1 {{R_2}}}} \right.
\kern-\nulldelimiterspace} {{R_2}}}}&{{{{R_1}} \mathord{\left/
{\vphantom {{{R_1}} {{R_2}}}} \right.
\kern-\nulldelimiterspace} {{R_2}}} + 1}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}{{4 \mathord{\left/
{\vphantom {4 3}} \right.
\kern-\nulldelimiterspace} 3}}&{ - 12}\\{{{ - 1} \mathord{\left/
{\vphantom {{ - 1} 4}} \right.
\kern-\nulldelimiterspace} 4}}&3\end{aligned}} \right)\end{aligned}\)
This implies that
\(\begin{aligned}{c}{{ - 1} \mathord{\left/
{\vphantom {{ - 1} {{R_2}}}} \right.
\kern-\nulldelimiterspace} {{R_2}}} = - {1 \mathord{\left/
{\vphantom {1 4}} \right.
\kern-\nulldelimiterspace} 4}\\{R_2} = 4\end{aligned}\)
\(\begin{aligned}{c}{{{R_1}} \mathord{\left/
{\vphantom {{{R_1}} {{R_2}}}} \right.
\kern-\nulldelimiterspace} {{R_2}}} + 1 = 3\\{{{R_1}} \mathord{\left/
{\vphantom {{{R_1}} 4}} \right.
\kern-\nulldelimiterspace} 4} = 2\\{R_1} = 8\end{aligned}\)
\(\begin{aligned}{c}1 + {{{R_3}} \mathord{\left/
{\vphantom {{{R_3}} {{R_2}}}} \right.
\kern-\nulldelimiterspace} {{R_2}}} = {4 \mathord{\left/
{\vphantom {4 3}} \right.
\kern-\nulldelimiterspace} 3}\\{{{R_3}} \mathord{\left/
{\vphantom {{{R_3}} 4}} \right.
\kern-\nulldelimiterspace} 4} = {1 \mathord{\left/
{\vphantom {1 3}} \right.
\kern-\nulldelimiterspace} 3}\\{R_3} = {4 \mathord{\left/
{\vphantom {4 3}} \right.
\kern-\nulldelimiterspace} 3}\end{aligned}\)