Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

30. Find a different factorization of the A in Exercise 29 i.e., \(A = \left( {\begin{aligned}{*{20}{c}}{{{\bf{4}} \mathord{\left/

{\vphantom {{\bf{4}} {\bf{3}}}} \right.

\kern-\nulldelimiterspace} {\bf{3}}}}&{ - {\bf{12}}}\\{{{ - {\bf{1}}} \mathord{\left/

{\vphantom {{ - {\bf{1}}} {\bf{4}}}} \right.

\kern-\nulldelimiterspace} {\bf{4}}}}&{\bf{3}}\end{aligned}} \right)\), and thereby design a different ladder network whose transfer matrix is A.

Short Answer

Expert verified

The different factorization of A in Exercise 29 is

\(A = \left( {\begin{aligned}{*{20}{c}}1&{ - {4 \mathord{\left/

{\vphantom {4 3}} \right.

\kern-\nulldelimiterspace} 3}}\\0&1\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 4}} \right.

\kern-\nulldelimiterspace} 4}}&1\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&{ - 8}\\0&1\end{aligned}} \right)\).

Thus, the ladder network, whose transfer matrix is A, is

Step by step solution

01

Design a ladder network

Construct a ladder network that is different from the network in Exercise 29.

02

Write the transfer matrices

Here, the first circuit is the series circuit with resistance \({R_1}\) , the second circuit is the shunt circuit with resistance \({R_2}\), and the last circuit is the series circuit with resistance \({R_3}\) , whose transfer matrices are \(\left( {\begin{aligned}{*{20}{c}}1&{ - {R_1}}\\0&1\end{aligned}} \right),\left( {\begin{aligned}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&1\end{aligned}} \right)\), and \(\left( {\begin{aligned}{*{20}{c}}1&{ - {R_3}}\\0&1\end{aligned}} \right)\), respectively.

03

Find the transfer matrix for the above ladder network

The transfer matrix for the ladder network is given by in the reverse order.

\(\begin{aligned}{c}\left( {\begin{aligned}{*{20}{c}}1&{ - {R_3}}\\0&1\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&1\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&{ - {R_1}}\\0&1\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}{1 + {{{R_3}} \mathord{\left/

{\vphantom {{{R_3}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&{ - {R_3}}\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&1\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&{ - {R_1}}\\0&1\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{1 + {{{R_3}} \mathord{\left/

{\vphantom {{{R_3}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&{ - {R_1} - {{{R_1}{R_3}} \mathord{\left/

{\vphantom {{{R_1}{R_3}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} - {R_3}}\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&{{{{R_1}} \mathord{\left/

{\vphantom {{{R_1}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} + 1}\end{aligned}} \right)\end{aligned}\)

04

Set matrix A, which is equal to the transfer matrix in step 2

\(\begin{aligned}{c}\left( {\begin{aligned}{*{20}{c}}{1 + {{{R_3}} \mathord{\left/

{\vphantom {{{R_3}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&{ - {R_1} - {{{R_1}{R_3}} \mathord{\left/

{\vphantom {{{R_1}{R_3}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} - {R_3}}\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&{{{{R_1}} \mathord{\left/

{\vphantom {{{R_1}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} + 1}\end{aligned}} \right) = A\\\left( {\begin{aligned}{*{20}{c}}{1 + {{{R_3}} \mathord{\left/

{\vphantom {{{R_3}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&{ - {R_1} - {{{R_1}{R_3}} \mathord{\left/

{\vphantom {{{R_1}{R_3}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} - {R_3}}\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&{{{{R_1}} \mathord{\left/

{\vphantom {{{R_1}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} + 1}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}{{4 \mathord{\left/

{\vphantom {4 3}} \right.

\kern-\nulldelimiterspace} 3}}&{ - 12}\\{{{ - 1} \mathord{\left/

{\vphantom {{ - 1} 4}} \right.

\kern-\nulldelimiterspace} 4}}&3\end{aligned}} \right)\end{aligned}\)

This implies that

\(\begin{aligned}{c}{{ - 1} \mathord{\left/

{\vphantom {{ - 1} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} = - {1 \mathord{\left/

{\vphantom {1 4}} \right.

\kern-\nulldelimiterspace} 4}\\{R_2} = 4\end{aligned}\)

\(\begin{aligned}{c}{{{R_1}} \mathord{\left/

{\vphantom {{{R_1}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} + 1 = 3\\{{{R_1}} \mathord{\left/

{\vphantom {{{R_1}} 4}} \right.

\kern-\nulldelimiterspace} 4} = 2\\{R_1} = 8\end{aligned}\)

\(\begin{aligned}{c}1 + {{{R_3}} \mathord{\left/

{\vphantom {{{R_3}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} = {4 \mathord{\left/

{\vphantom {4 3}} \right.

\kern-\nulldelimiterspace} 3}\\{{{R_3}} \mathord{\left/

{\vphantom {{{R_3}} 4}} \right.

\kern-\nulldelimiterspace} 4} = {1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}\\{R_3} = {4 \mathord{\left/

{\vphantom {4 3}} \right.

\kern-\nulldelimiterspace} 3}\end{aligned}\)

05

Conclusion

The different factorization of A in Exercise 29 is:

\(A = \left( {\begin{aligned}{*{20}{c}}1&{ - {4 \mathord{\left/

{\vphantom {4 3}} \right.

\kern-\nulldelimiterspace} 3}}\\0&1\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 4}} \right.

\kern-\nulldelimiterspace} 4}}&1\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&{ - 8}\\0&1\end{aligned}} \right)\)

Thus, the ladder network, whose transfer matrix is A, is

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In exercise 11 and 12, mark each statement True or False.Justify each answer.

a. If \(A = \left[ {\begin{array}{*{20}{c}}{{A_{\bf{1}}}}&{{A_{\bf{2}}}}\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}{{B_{\bf{1}}}}&{{B_{\bf{2}}}}\end{array}} \right]\), with \({A_{\bf{1}}}\) and \({A_{\bf{2}}}\) the same sizes as \({B_{\bf{1}}}\) and \({B_{\bf{2}}}\), respectively then \(A + B = \left[ {\begin{array}{*{20}{c}}{{A_1} + {B_1}}&{{A_{\bf{2}}} + {B_{\bf{2}}}}\end{array}} \right]\).

b. If \(A = \left[ {\begin{array}{*{20}{c}}{{A_{{\bf{11}}}}}&{{A_{{\bf{12}}}}}\\{{A_{{\bf{21}}}}}&{{A_{{\bf{22}}}}}\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}{{B_1}}\\{{B_{\bf{2}}}}\end{array}} \right]\), then the partitions of \(A\) and \(B\) are comfortable for block multiplication.

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation, and let Sand U be functions from \({\mathbb{R}^n}\) into \({\mathbb{R}^n}\) such that \(S\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) and \(\)\(U\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\). Show that \(U\left( v \right) = S\left( v \right)\) for all v in \({\mathbb{R}^n}\). This will show that Thas a unique inverse, as asserted in theorem 9. [Hint: Given any v in \({\mathbb{R}^n}\), we can write \({\mathop{\rm v}\nolimits} = T\left( {\mathop{\rm x}\nolimits} \right)\) for some x. Why? Compute \(S\left( {\mathop{\rm v}\nolimits} \right)\) and \(U\left( {\mathop{\rm v}\nolimits} \right)\)].

1. Find the inverse of the matrix \(\left( {\begin{aligned}{*{20}{c}}{\bf{8}}&{\bf{6}}\\{\bf{5}}&{\bf{4}}\end{aligned}} \right)\).

In Exercises 1โ€“9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1โ€“4.

3. \[\left[ {\begin{array}{*{20}{c}}{\bf{0}}&I\\I&{\bf{0}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}W&X\\Y&Z\end{array}} \right]\]

Suppose Ais an \(m \times n\) matrix and there exist \(n \times m\) matrices C and D such that \(CA = {I_n}\) and \(AD = {I_m}\). Prove that \(m = n\) and \(C = D\). (Hint: Think about the product CAD.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free