Chapter 2: Q2.5-2Q (page 93)
1-6: Solve the equation Ax=b by using the LU factorization given for A. In Exercises 1 and 2, also solve \(Ax = b\) by ordinary row reduction.
2. \[A = \left[ {\begin{array}{*{20}{c}}4&3&{ - 5}\\{ - 4}&{ - 5}&7\\8&6&{ - 8}\end{array}} \right],{\mathop{\rm b}\nolimits} = \left[ {\begin{array}{*{20}{c}}2\\{ - 4}\\6\end{array}} \right]\]
\(A = \left[ {\begin{array}{*{20}{c}}1&0&0\\{ - 1}&1&0\\2&0&1\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}4&3&{ - 5}\\0&{ - 2}&2\\0&0&2\end{array}} \right]\)
Short Answer
\({\mathop{\rm x}\nolimits} = \left( {\frac{1}{4},2,1} \right)\) and \(y = \left[ {\begin{array}{*{20}{c}}2\\{ - 2}\\2\end{array}} \right]\)