Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

  1. Compute the transfer matrix of the network in the figure.
  2. Let \[A = \left[ {\begin{array}{*{20}{c}}{{{\bf{4}} \mathord{\left/
  3. {\vphantom {{\bf{4}} {\bf{3}}}} \right.
  4. \kern-\nulldelimiterspace} {\bf{3}}}}&{ - {\bf{12}}}\\{{{ - {\bf{1}}} \mathord{\left/
  5. {\vphantom {{ - {\bf{1}}} {\bf{4}}}} \right.
  6. \kern-\nulldelimiterspace} {\bf{4}}}}&{\bf{3}}\end{array}} \right]\]. Design a ladder network whose transfer matrix is Aby finding a suitable matrix factorization of A.

Short Answer

Expert verified
  1. The transfer matrix for the given network is \[\left[ {\begin{array}{*{20}{c}}{1 + {{{R_2}} \mathord{\left/
  2. {\vphantom {{{R_2}} {{R_1}}}} \right.
  3. \kern-\nulldelimiterspace} {{R_1}}}}&{ - {R_2}}\\{ - {1 \mathord{\left/
  4. {\vphantom {1 {{R_3} - {{{R_2}} \mathord{\left/
  5. {\vphantom {{{R_2}} {\left( {{R_1}{R_3}} \right)}}} \right.
  6. \kern-\nulldelimiterspace} {\left( {{R_1}{R_3}} \right)}} - {1 \mathord{\left/
  7. {\vphantom {1 {{R_1}}}} \right.
  8. \kern-\nulldelimiterspace} {{R_1}}}}}} \right.
  9. \kern-\nulldelimiterspace} {{R_3} - {{{R_2}} \mathord{\left/
  10. {\vphantom {{{R_2}} {\left( {{R_1}{R_3}} \right)}}} \right.
  11. \kern-\nulldelimiterspace} {\left( {{R_1}{R_3}} \right)}} - {1 \mathord{\left/
  12. {\vphantom {1 {{R_1}}}} \right.
  13. \kern-\nulldelimiterspace} {{R_1}}}}}}&{{{{R_2}} \mathord{\left/
  14. {\vphantom {{{R_2}} {{R_3}}}} \right.
  15. \kern-\nulldelimiterspace} {{R_3}}} + 1}\end{array}} \right]\].
  16. The suitable matrix factorization of A is

\[A = \left[ {\begin{array}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 6}} \right.

\kern-\nulldelimiterspace} 6}}&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&{ - 12}\\0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {36}}} \right.

\kern-\nulldelimiterspace} {36}}}&1\end{array}} \right]\].

Thus, the ladder network is

Step by step solution

01

Write the transfer matrices

(a)

The first circuit is the shunt circuit with resistance \[{R_1}\] , the second circuit is the series circuit with resistance \[{R_2}\], and the last circuit is the shunt circuit with resistance \[{R_3}\] , whose transfer matrices are \[\left[ {\begin{array}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_1}}}} \right.

\kern-\nulldelimiterspace} {{R_1}}}}&1\end{array}} \right],\left[ {\begin{array}{*{20}{c}}1&{ - {R_2}}\\0&1\end{array}} \right]\], and \[\left[ {\begin{array}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_3}}}} \right.

\kern-\nulldelimiterspace} {{R_3}}}}&1\end{array}} \right]\], respectively.

02

Find the transfer matrix for the given network

The transfer matrix for the given network is given by in the reverse order.

\[\begin{array}{c}\left[ {\begin{array}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_3}}}} \right.

\kern-\nulldelimiterspace} {{R_3}}}}&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&{ - {R_2}}\\0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_1}}}} \right.

\kern-\nulldelimiterspace} {{R_1}}}}&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&{ - {R_2}}\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_3}}}} \right.

\kern-\nulldelimiterspace} {{R_3}}}}&{{{{R_2}} \mathord{\left/

{\vphantom {{{R_2}} {{R_3}}}} \right.

\kern-\nulldelimiterspace} {{R_3}}} + 1}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_1}}}} \right.

\kern-\nulldelimiterspace} {{R_1}}}}&1\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{1 + {{{R_2}} \mathord{\left/

{\vphantom {{{R_2}} {{R_1}}}} \right.

\kern-\nulldelimiterspace} {{R_1}}}}&{ - {R_2}}\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_3} - {{{R_2}} \mathord{\left/

{\vphantom {{{R_2}} {\left( {{R_1}{R_3}} \right)}}} \right.

\kern-\nulldelimiterspace} {\left( {{R_1}{R_3}} \right)}} - {1 \mathord{\left/

{\vphantom {1 {{R_1}}}} \right.

\kern-\nulldelimiterspace} {{R_1}}}}}} \right.

\kern-\nulldelimiterspace} {{R_3} - {{{R_2}} \mathord{\left/

{\vphantom {{{R_2}} {\left( {{R_1}{R_3}} \right)}}} \right.

\kern-\nulldelimiterspace} {\left( {{R_1}{R_3}} \right)}} - {1 \mathord{\left/

{\vphantom {1 {{R_1}}}} \right.

\kern-\nulldelimiterspace} {{R_1}}}}}}&{{{{R_2}} \mathord{\left/

{\vphantom {{{R_2}} {{R_3}}}} \right.

\kern-\nulldelimiterspace} {{R_3}}} + 1}\end{array}} \right]\end{array}\]

03

Design a ladder network whose transfer matrix is A

(b)

To find a ladder network having a structure resembling the one in part (a) with the transfer matrix A, the resistances \[{R_1},{R_2},\] and \[{R_3}\] must satisfy the equation.

\[\begin{array}{c}\left[ {\begin{array}{*{20}{c}}{1 + {{{R_2}} \mathord{\left/

{\vphantom {{{R_2}} {{R_1}}}} \right.

\kern-\nulldelimiterspace} {{R_1}}}}&{ - {R_2}}\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_3} - {{{R_2}} \mathord{\left/

{\vphantom {{{R_2}} {\left( {{R_1}{R_3}} \right)}}} \right.

\kern-\nulldelimiterspace} {\left( {{R_1}{R_3}} \right)}} - {1 \mathord{\left/

{\vphantom {1 {{R_1}}}} \right.

\kern-\nulldelimiterspace} {{R_1}}}}}} \right.

\kern-\nulldelimiterspace} {{R_3} - {{{R_2}} \mathord{\left/

{\vphantom {{{R_2}} {\left( {{R_1}{R_3}} \right)}}} \right.

\kern-\nulldelimiterspace} {\left( {{R_1}{R_3}} \right)}} - {1 \mathord{\left/

{\vphantom {1 {{R_1}}}} \right.

\kern-\nulldelimiterspace} {{R_1}}}}}}&{{{{R_2}} \mathord{\left/

{\vphantom {{{R_2}} {{R_3}}}} \right.

\kern-\nulldelimiterspace} {{R_3}}} + 1}\end{array}} \right] = A\\\left[ {\begin{array}{*{20}{c}}{1 + {{{R_2}} \mathord{\left/

{\vphantom {{{R_2}} {{R_1}}}} \right.

\kern-\nulldelimiterspace} {{R_1}}}}&{ - {R_2}}\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_3} - {{{R_2}} \mathord{\left/

{\vphantom {{{R_2}} {\left( {{R_1}{R_3}} \right)}}} \right.

\kern-\nulldelimiterspace} {\left( {{R_1}{R_3}} \right)}} - {1 \mathord{\left/

{\vphantom {1 {{R_1}}}} \right.

\kern-\nulldelimiterspace} {{R_1}}}}}} \right.

\kern-\nulldelimiterspace} {{R_3} - {{{R_2}} \mathord{\left/

{\vphantom {{{R_2}} {\left( {{R_1}{R_3}} \right)}}} \right.

\kern-\nulldelimiterspace} {\left( {{R_1}{R_3}} \right)}} - {1 \mathord{\left/

{\vphantom {1 {{R_1}}}} \right.

\kern-\nulldelimiterspace} {{R_1}}}}}}&{{{{R_2}} \mathord{\left/

{\vphantom {{{R_2}} {{R_3}}}} \right.

\kern-\nulldelimiterspace} {{R_3}}} + 1}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{{4 \mathord{\left/

{\vphantom {4 3}} \right.

\kern-\nulldelimiterspace} 3}}&{ - 12}\\{{{ - 1} \mathord{\left/

{\vphantom {{ - 1} 4}} \right.

\kern-\nulldelimiterspace} 4}}&3\end{array}} \right]\end{array}\]

This implies that

\[\begin{array}{c} - {R_2} = - 12\\{R_2} = 12\end{array}\]

\[\begin{array}{c}{{{R_2}} \mathord{\left/

{\vphantom {{{R_2}} {{R_3}}}} \right.

\kern-\nulldelimiterspace} {{R_3}}} + 1 = 3\\{{12} \mathord{\left/

{\vphantom {{12} {{R_3}}}} \right.

\kern-\nulldelimiterspace} {{R_3}}} = 2\\{R_3} = 6\end{array}\]

\[\begin{array}{c}1 + {{{R_2}} \mathord{\left/

{\vphantom {{{R_2}} {{R_1}}}} \right.

\kern-\nulldelimiterspace} {{R_1}}} = {4 \mathord{\left/

{\vphantom {4 3}} \right.

\kern-\nulldelimiterspace} 3}\\{{12} \mathord{\left/

{\vphantom {{12} {{R_1}}}} \right.

\kern-\nulldelimiterspace} {{R_1}}} = {4 \mathord{\left/

{\vphantom {4 3}} \right.

\kern-\nulldelimiterspace} 3} - 1\\{{12} \mathord{\left/

{\vphantom {{12} {{R_1}}}} \right.

\kern-\nulldelimiterspace} {{R_1}}} = {1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}\\{R_1} = 36\end{array}\]

Hence, the suitable matrix factorization of A is:

\[A = \left[ {\begin{array}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 6}} \right.

\kern-\nulldelimiterspace} 6}}&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&{ - 12}\\0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {36}}} \right.

\kern-\nulldelimiterspace} {36}}}&1\end{array}} \right]\]

Thus, theladder network is:

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose a linear transformation \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) has the property that \(T\left( {\mathop{\rm u}\nolimits} \right) = T\left( {\mathop{\rm v}\nolimits} \right)\) for some pair of distinct vectors u and v in \({\mathbb{R}^n}\). Can Tmap \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\)? Why or why not?

In Exercises 1โ€“9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1โ€“4.

1. \(\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\E&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&B\\C&D\end{array}} \right]\)

Suppose A, B,and Care invertible \(n \times n\) matrices. Show that ABCis also invertible by producing a matrix Dsuch that \(\left( {ABC} \right)D = I\) and \(D\left( {ABC} \right) = I\).

Let \(A = \left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\), and \(D = \left( {\begin{aligned}{*{20}{c}}2&0&0\\0&3&0\\0&0&5\end{aligned}} \right)\). Compute \(AD\) and \(DA\). Explain how the columns or rows of A change when A is multiplied by D on the right or on the left. Find a \(3 \times 3\) matrix B, not the identity matrix or the zero matrix, such that \(AB = BA\).

Suppose Tand Ssatisfy the invertibility equations (1) and (2), where T is a linear transformation. Show directly that Sis a linear transformation. [Hint: Given u, v in \({\mathbb{R}^n}\), let \[{\mathop{\rm x}\nolimits} = S\left( {\mathop{\rm u}\nolimits} \right),{\mathop{\rm y}\nolimits} = S\left( {\mathop{\rm v}\nolimits} \right)\]. Then \(T\left( {\mathop{\rm x}\nolimits} \right) = {\mathop{\rm u}\nolimits} \), \[T\left( {\mathop{\rm y}\nolimits} \right) = {\mathop{\rm v}\nolimits} \]. Why? Apply Sto both sides of the equation \(T\left( {\mathop{\rm x}\nolimits} \right) + T\left( {\mathop{\rm y}\nolimits} \right) = T\left( {{\mathop{\rm x}\nolimits} + y} \right)\). Also, consider \(T\left( {cx} \right) = cT\left( x \right)\).]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free