Chapter 2: Q2.5-29Q (page 93)
- Compute the transfer matrix of the network in the figure.
- Let \[A = \left[ {\begin{array}{*{20}{c}}{{{\bf{4}} \mathord{\left/
- {\vphantom {{\bf{4}} {\bf{3}}}} \right.
- \kern-\nulldelimiterspace} {\bf{3}}}}&{ - {\bf{12}}}\\{{{ - {\bf{1}}} \mathord{\left/
- {\vphantom {{ - {\bf{1}}} {\bf{4}}}} \right.
- \kern-\nulldelimiterspace} {\bf{4}}}}&{\bf{3}}\end{array}} \right]\]. Design a ladder network whose transfer matrix is Aby finding a suitable matrix factorization of A.
Short Answer
- The transfer matrix for the given network is \[\left[ {\begin{array}{*{20}{c}}{1 + {{{R_2}} \mathord{\left/
- {\vphantom {{{R_2}} {{R_1}}}} \right.
- \kern-\nulldelimiterspace} {{R_1}}}}&{ - {R_2}}\\{ - {1 \mathord{\left/
- {\vphantom {1 {{R_3} - {{{R_2}} \mathord{\left/
- {\vphantom {{{R_2}} {\left( {{R_1}{R_3}} \right)}}} \right.
- \kern-\nulldelimiterspace} {\left( {{R_1}{R_3}} \right)}} - {1 \mathord{\left/
- {\vphantom {1 {{R_1}}}} \right.
- \kern-\nulldelimiterspace} {{R_1}}}}}} \right.
- \kern-\nulldelimiterspace} {{R_3} - {{{R_2}} \mathord{\left/
- {\vphantom {{{R_2}} {\left( {{R_1}{R_3}} \right)}}} \right.
- \kern-\nulldelimiterspace} {\left( {{R_1}{R_3}} \right)}} - {1 \mathord{\left/
- {\vphantom {1 {{R_1}}}} \right.
- \kern-\nulldelimiterspace} {{R_1}}}}}}&{{{{R_2}} \mathord{\left/
- {\vphantom {{{R_2}} {{R_3}}}} \right.
- \kern-\nulldelimiterspace} {{R_3}}} + 1}\end{array}} \right]\].
- The suitable matrix factorization of A is
\[A = \left[ {\begin{array}{*{20}{c}}1&0\\{ - {1 \mathord{\left/
{\vphantom {1 6}} \right.
\kern-\nulldelimiterspace} 6}}&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&{ - 12}\\0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&0\\{ - {1 \mathord{\left/
{\vphantom {1 {36}}} \right.
\kern-\nulldelimiterspace} {36}}}&1\end{array}} \right]\].
Thus, the ladder network is