Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

28. Show that if three shunt circuits (with resistances \({R_{\bf{1}}},{R_{\bf{2}}},\,{R_{\bf{3}}}\)) are connected in series, the resulting network has the same transfer matrix as a single shunt circuit. Find a formula for the resistance in that circuit.

Short Answer

Expert verified

The resulting network is itself a single shunt circuit with resistance \({1 \mathord{\left/

{\vphantom {1 {{R_1}}}} \right.

\kern-\nulldelimiterspace} {{R_1}}} + {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} + {1 \mathord{\left/

{\vphantom {1 {{R_3}}}} \right.

\kern-\nulldelimiterspace} {{R_3}}}\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Write the transfer matrices

The transfer matrices of the shunt circuit with resistances \({R_1},{R_2},\)and \({R_3}\) are \(\left( {\begin{aligned}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_1}}}} \right.

\kern-\nulldelimiterspace} {{R_1}}}}&1\end{aligned}} \right),\left( {\begin{aligned}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&1\end{aligned}} \right),\)and \(\left( {\begin{aligned}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_3}}}} \right.

\kern-\nulldelimiterspace} {{R_3}}}}&1\end{aligned}} \right)\), respectively.

02

Find the transfer matrix for the resulting network

\(\begin{aligned}{c}\left( {\begin{aligned}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_3}}}} \right.

\kern-\nulldelimiterspace} {{R_3}}}}&1\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&1\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_1}}}} \right.

\kern-\nulldelimiterspace} {{R_1}}}}&1\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_3}}}} \right.

\kern-\nulldelimiterspace} {{R_3}}} - {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&1\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_1}}}} \right.

\kern-\nulldelimiterspace} {{R_1}}}}&1\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_3}}}} \right.

\kern-\nulldelimiterspace} {{R_3}}} - {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} - {1 \mathord{\left/

{\vphantom {1 {{R_1}}}} \right.

\kern-\nulldelimiterspace} {{R_1}}}}&1\end{aligned}} \right)\\\left( {\begin{aligned}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_3}}}} \right.

\kern-\nulldelimiterspace} {{R_3}}}}&1\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&1\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_1}}}} \right.

\kern-\nulldelimiterspace} {{R_1}}}}&1\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}1&0\\{ - \left( {{1 \mathord{\left/

{\vphantom {1 {{R_1}}}} \right.

\kern-\nulldelimiterspace} {{R_1}}} + {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} + {1 \mathord{\left/

{\vphantom {1 {{R_3}}}} \right.

\kern-\nulldelimiterspace} {{R_3}}}} \right)}&1\end{aligned}} \right)\end{aligned}\)

03

Conclusion

Hence, the resulting network is itself a single shunt circuit with resistance \({1 \mathord{\left/

{\vphantom {1 {{R_1}}}} \right.

\kern-\nulldelimiterspace} {{R_1}}} + {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} + {1 \mathord{\left/

{\vphantom {1 {{R_3}}}} \right.

\kern-\nulldelimiterspace} {{R_3}}}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In exercise 11 and 12, mark each statement True or False.Justify each answer.

a. If \(A = \left[ {\begin{array}{*{20}{c}}{{A_{\bf{1}}}}&{{A_{\bf{2}}}}\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}{{B_{\bf{1}}}}&{{B_{\bf{2}}}}\end{array}} \right]\), with \({A_{\bf{1}}}\) and \({A_{\bf{2}}}\) the same sizes as \({B_{\bf{1}}}\) and \({B_{\bf{2}}}\), respectively then \(A + B = \left[ {\begin{array}{*{20}{c}}{{A_1} + {B_1}}&{{A_{\bf{2}}} + {B_{\bf{2}}}}\end{array}} \right]\).

b. If \(A = \left[ {\begin{array}{*{20}{c}}{{A_{{\bf{11}}}}}&{{A_{{\bf{12}}}}}\\{{A_{{\bf{21}}}}}&{{A_{{\bf{22}}}}}\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}{{B_1}}\\{{B_{\bf{2}}}}\end{array}} \right]\), then the partitions of \(A\) and \(B\) are comfortable for block multiplication.

1. Find the inverse of the matrix \(\left( {\begin{aligned}{*{20}{c}}{\bf{8}}&{\bf{6}}\\{\bf{5}}&{\bf{4}}\end{aligned}} \right)\).

Let \(A = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}&{\bf{5}}\\{ - {\bf{3}}}&{\bf{1}}\end{aligned}} \right)\) and \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}&{ - {\bf{5}}}\\{\bf{3}}&k\end{aligned}} \right)\). What value(s) of \(k\), if any will make \(AB = BA\)?

A useful way to test new ideas in matrix algebra, or to make conjectures, is to make calculations with matrices selected at random. Checking a property for a few matrices does not prove that the property holds in general, but it makes the property more believable. Also, if the property is actually false, you may discover this when you make a few calculations.

36. Write the command(s) that will create a \(6 \times 4\) matrix with random entries. In what range of numbers do the entries lie? Tell how to create a \(3 \times 3\) matrix with random integer entries between \( - {\bf{9}}\) and 9. (Hint:If xis a random number such that 0 < x < 1, then \( - 9.5 < 19\left( {x - .5} \right) < 9.5\).

If \(A = \left( {\begin{aligned}{*{20}{c}}1&{ - 2}\\{ - 2}&5\end{aligned}} \right)\) and \(AB = \left( {\begin{aligned}{*{20}{c}}{ - 1}&2&{ - 1}\\6&{ - 9}&3\end{aligned}} \right)\), determine the first and second column of B.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free