Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

27. Design two different ladder networks that each output 9 volts and 4 amps when the input is 12 volts and 6 amps.

Short Answer

Expert verified

The first ladder network is

Here, \[{v_1} = 12,{i_1} = 6,\] and \[{v_3} = 9,{i_3} = 4\].

The second ladder network is

Here, \[{v_1} = 12,{i_1} = 6,\] and \[{v_3} = 9,{i_3} = 4\].

Step by step solution

01

Write the transfer matrices

The transfer matrices of the series circuit with resistance \[{R_1}\] and shunt circuit with resistance \[{R_2}\] are \[\left[ {\begin{array}{*{20}{c}}1&{ - {R_1}}\\0&1\end{array}} \right]\], and \[\left[ {\begin{array}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&1\end{array}} \right]\], respectively.

02

Design the first ladder network

Consider the first ladder network as aseries circuitwith resistance \[{R_1}\], followed by a shunt circuitwith resistance \[{R_2}\]. Therefore, the transfer matrix for this network is

\[\left[ {\begin{array}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&{ - {R_1}}\\0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&{ - {R_1}}\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&{1 + {{{R_1}} \mathord{\left/

{\vphantom {{{R_1}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}\end{array}} \right]\].

To produce an output of 9 volts and 4 amps for an input of 12 volts and 6 amps, the transfer matrix must satisfy the equation:

\[\begin{array}{c}\left[ {\begin{array}{*{20}{c}}1&{ - {R_1}}\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&{1 + {{{R_1}} \mathord{\left/

{\vphantom {{{R_1}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{12}\\6\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}9\\4\end{array}} \right]\\\left[ {\begin{array}{*{20}{c}}{12 - 6{R_1}}\\{ - {{12} \mathord{\left/

{\vphantom {{12} {{R_2} + 6 + {{6{R_1}} \mathord{\left/

{\vphantom {{6{R_1}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}}} \right.

\kern-\nulldelimiterspace} {{R_2} + 6 + {{6{R_1}} \mathord{\left/

{\vphantom {{6{R_1}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}9\\4\end{array}} \right]\end{array}\]

This implies that

\[\begin{array}{c}12 - 6{R_1} = 9\\6{R_1} = 3\\{R_1} = {1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}\end{array}\]

And

\[\begin{array}{c} - {{12} \mathord{\left/

{\vphantom {{12} {{R_2} + 6 + {{6{R_1}} \mathord{\left/

{\vphantom {{6{R_1}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}}} \right.

\kern-\nulldelimiterspace} {{R_2} + 6 + {{6{R_1}} \mathord{\left/

{\vphantom {{6{R_1}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}} = 4\\ - 12 + 6{R_2} + 6\left( {{1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}} \right) = 4{R_2}\\2{R_2} = 12 - 3\\{R_2} = {9 \mathord{\left/

{\vphantom {9 2}} \right.

\kern-\nulldelimiterspace} 2}\end{array}\]

Thus, the firstladder network is

Here, \[{v_1} = 12,{i_1} = 6,\] and \[{v_3} = 9,{i_3} = 4\].

03

Design the second ladder network

Consider the second ladder network as a shunt circuit with resistance \[{R_2}\], followed by a series circuit with resistance \[{R_1}\]. Therefore, the transfer matrix for this network is

\[\left[ {\begin{array}{*{20}{c}}1&{ - {R_1}}\\0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&0\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{1 + {{{R_1}} \mathord{\left/

{\vphantom {{{R_1}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&{ - {R_1}}\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&1\end{array}} \right]\].

To produce an output of 9 volts and 4 amps for an input of 12 volts and 6 amps, the transfer matrix must satisfy the equation:

\[\begin{array}{c}\left[ {\begin{array}{*{20}{c}}{1 + {{{R_1}} \mathord{\left/

{\vphantom {{{R_1}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&{ - {R_1}}\\{ - {1 \mathord{\left/

{\vphantom {1 {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}}}&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{12}\\6\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}9\\4\end{array}} \right]\\\left[ {\begin{array}{*{20}{c}}{12 + {{12{R_1}} \mathord{\left/

{\vphantom {{12{R_1}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} - 6{R_1}}\\{ - {{12} \mathord{\left/

{\vphantom {{12} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} + 6}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}9\\4\end{array}} \right]\end{array}\]

This implies that

\[\begin{array}{c} - {{12} \mathord{\left/

{\vphantom {{12} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} + 6 = 4\\{{12} \mathord{\left/

{\vphantom {{12} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} = 2\\{R_2} = 6\end{array}\]

And

\[\begin{array}{c}12 + {{12{R_1}} \mathord{\left/

{\vphantom {{12{R_1}} {{R_2}}}} \right.

\kern-\nulldelimiterspace} {{R_2}}} - 6{R_1} = 9\\3 + {{12{R_1}} \mathord{\left/

{\vphantom {{12{R_1}} 6}} \right.

\kern-\nulldelimiterspace} 6} - 6{R_1} = 0\\3 + 2{R_1} - 6{R_1} = 0\\{R_1} = {3 \mathord{\left/

{\vphantom {3 4}} \right.

\kern-\nulldelimiterspace} 4}\end{array}\]

Thus, the second ladder network is

Here, \[{v_1} = 12,{i_1} = 6,\] and \[{v_3} = 9,{i_3} = 4\].

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose Ais an \(m \times n\) matrix and there exist \(n \times m\) matrices C and D such that \(CA = {I_n}\) and \(AD = {I_m}\). Prove that \(m = n\) and \(C = D\). (Hint: Think about the product CAD.)

Let Abe an invertible \(n \times n\) matrix, and let B be an \(n \times p\) matrix. Show that the equation \(AX = B\) has a unique solution \({A^{ - 1}}B\).

[M] For block operations, it may be necessary to access or enter submatrices of a large matrix. Describe the functions or commands of your matrix program that accomplish the following tasks. Suppose A is a \(20 \times 30\) matrix.

  1. Display the submatrix of Afrom rows 15 to 20 and columns 5 to 10.
  2. Insert a \(5 \times 10\) matrix B into A, beginning at row 10 and column 20.
  3. Create a \(50 \times 50\) matrix of the form \(B = \left[ {\begin{array}{*{20}{c}}A&0\\0&{{A^T}}\end{array}} \right]\).

[Note: It may not be necessary to specify the zero blocks in B.]

In exercises 11 and 12, mark each statement True or False. Justify each answer.

a. The definition of the matrix-vector product \(A{\bf{x}}\) is a special case of block multiplication.

b. If \({A_{\bf{1}}}\), \({A_{\bf{2}}}\), \({B_{\bf{1}}}\), and \({B_{\bf{2}}}\) are \(n \times n\) matrices, \[A = \left[ {\begin{array}{*{20}{c}}{{A_{\bf{1}}}}\\{{A_{\bf{2}}}}\end{array}} \right]\] and \(B = \left[ {\begin{array}{*{20}{c}}{{B_{\bf{1}}}}&{{B_{\bf{2}}}}\end{array}} \right]\), then the product \(BA\) is defined, but \(AB\) is not.

Suppose Tand U are linear transformations from \({\mathbb{R}^n}\) to \({\mathbb{R}^n}\) such that \(T\left( {U{\mathop{\rm x}\nolimits} } \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\) . Is it true that \(U\left( {T{\mathop{\rm x}\nolimits} } \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\)? Why or why not?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free