Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

26. (Spectral Factorization) Suppose a \({\bf{3}} \times {\bf{3}}\) matrix Aadmits a factorization as \(A = PD{P^{ - 1}}\), where \(P\)is some invertible \({\bf{3}} \times {\bf{3}}\) matrix and D is the diagonal matrix \(D = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{{{\bf{1}} \mathord{\left/

{\vphantom {{\bf{1}} {\bf{2}}}} \right.

\kern-\nulldelimiterspace} {\bf{2}}}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{{{\bf{1}} \mathord{\left/

{\vphantom {{\bf{1}} {\bf{3}}}} \right.

\kern-\nulldelimiterspace} {\bf{3}}}}\end{aligned}} \right)\)

Show that this factorization is useful when computing high powers of A. Find fairly simple formulas for \({A^{\bf{2}}}\),\({A^{\bf{3}}}\), and \({A^k}\)(k a positive integer), using P and entries in D.

Short Answer

Expert verified

The formulas for \({A^2},{A^3},\) and \({A^k}\) are \({A^2} = P\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{1 \mathord{\left/

{\vphantom {1 4}} \right.

\kern-\nulldelimiterspace} 4}}&0\\0&0&{{1 \mathord{\left/

{\vphantom {1 9}} \right.

\kern-\nulldelimiterspace} 9}}\end{aligned}} \right){P^{ - 1}}\), \({A^3} = P\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{1 \mathord{\left/

{\vphantom {1 8}} \right.

\kern-\nulldelimiterspace} 8}}&0\\0&0&{{1 \mathord{\left/

{\vphantom {1 {27}}} \right.

\kern-\nulldelimiterspace} {27}}}\end{aligned}} \right){P^{ - 1}}\), and \({A^k} = P\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{{{1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}}^k}}&0\\0&0&{{{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}^k}}\end{aligned}} \right){P^{ - 1}}\), respectively.

Step by step solution

01

Compute \({A^{\bf{2}}}\)

\(\begin{aligned}{c}{A^2} = AA\\ = \left( {PD{P^{ - 1}}} \right)\left( {PD{P^{ - 1}}} \right)\\ = PD\left( {{P^{ - 1}}P} \right)D{P^{ - 1}}\\ = PDID{P^{ - 1}}\\{A^2} = P{D^2}{P^{ - 1}}\end{aligned}\)

First, compute \({D^2}\):

\(\begin{aligned}{c}{D^2} = DD\\ = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}}&0\\0&0&{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}}&0\\0&0&{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{{\left( {{1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}^2}}&0\\0&0&{{{\left( {{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}} \right)}^2}}\end{aligned}} \right)\\{D^2} = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{{{1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}}^2}}&0\\0&0&{{{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}^2}}\end{aligned}} \right)\end{aligned}\)

Then,

\(\begin{aligned}{c}{A^2} = P\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{{{1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}}^2}}&0\\0&0&{{{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}^2}}\end{aligned}} \right){P^{ - 1}}\\ = P\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{1 \mathord{\left/

{\vphantom {1 4}} \right.

\kern-\nulldelimiterspace} 4}}&0\\0&0&{{1 \mathord{\left/

{\vphantom {1 9}} \right.

\kern-\nulldelimiterspace} 9}}\end{aligned}} \right){P^{ - 1}}\end{aligned}\)

02

Compute \({A^{\bf{3}}}\)

\(\begin{aligned}{c}{A^3} = {A^2}A\\ = \left( {P{D^2}{P^{ - 1}}} \right)\left( {PD{P^{ - 1}}} \right)\\ = = P{D^2}\left( {{P^{ - 1}}P} \right)D{P^{ - 1}}\\ = P{D^2}ID{P^{ - 1}}\\{A^3} = P{D^3}{P^{ - 1}}\end{aligned}\)

First, Compute \({D^3}\):

\(\begin{aligned}{c}{D^3} = {D^2}D\\ = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{1 \mathord{\left/

{\vphantom {1 {{2^2}}}} \right.

\kern-\nulldelimiterspace} {{2^2}}}}&0\\0&0&{{1 \mathord{\left/

{\vphantom {1 {{3^2}}}} \right.

\kern-\nulldelimiterspace} {{3^2}}}}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}}&0\\0&0&{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{{\left( {{1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}^3}}&0\\0&0&{{{\left( {{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}} \right)}^3}}\end{aligned}} \right)\\{D^3} = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{{{1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}}^3}}&0\\0&0&{{{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}^3}}\end{aligned}} \right)\end{aligned}\)

Then,

\(\begin{aligned}{c}{A^3} = P\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{{{1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}}^3}}&0\\0&0&{{{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}^3}}\end{aligned}} \right){P^{ - 1}}\\ = P\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{1 \mathord{\left/

{\vphantom {1 8}} \right.

\kern-\nulldelimiterspace} 8}}&0\\0&0&{{1 \mathord{\left/

{\vphantom {1 {27}}} \right.

\kern-\nulldelimiterspace} {27}}}\end{aligned}} \right){P^{ - 1}}\end{aligned}\)

03

Compute \({A^k}\)

In general, \({A^k} = P{D^k}{P^{ - 1}}\) with \({D^k} = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{{{1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}}^k}}&0\\0&0&{{{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}^k}}\end{aligned}} \right)\). That is

\({A^k} = P\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{{{1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}}^k}}&0\\0&0&{{{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}^k}}\end{aligned}} \right){P^{ - 1}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 27 and 28, view vectors in \({\mathbb{R}^n}\)as\(n \times 1\)matrices. For \({\mathop{\rm u}\nolimits} \) and \({\mathop{\rm v}\nolimits} \) in \({\mathbb{R}^n}\), the matrix product \({{\mathop{\rm u}\nolimits} ^T}v\) is a \(1 \times 1\) matrix, called the scalar product, or inner product, of u and v. It is usually written as a single real number without brackets. The matrix product \({{\mathop{\rm uv}\nolimits} ^T}\) is a \(n \times n\) matrix, called the outer product of u and v. The products \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \) and \({{\mathop{\rm uv}\nolimits} ^T}\) will appear later in the text.

28. If u and v are in \({\mathbb{R}^n}\), how are \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \) and \({{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} \) related? How are \({{\mathop{\rm uv}\nolimits} ^T}\) and \({\mathop{\rm v}\nolimits} {{\mathop{\rm u}\nolimits} ^T}\) related?

When a deep space probe launched, corrections may be necessary to place the probe on a precisely calculated trajectory. Radio elementary provides a stream of vectors, \({{\bf{x}}_{\bf{1}}},....,{{\bf{x}}_k}\), giving information at different times about how the probeโ€™s position compares with its planned trajectory. Let \({X_k}\) be the matrix \(\left[ {{x_{\bf{1}}}.....{x_k}} \right]\). The matrix \({G_k} = {X_k}X_k^T\) is computed as the radar data are analyzed. When \({x_{k + {\bf{1}}}}\) arrives, a new \({G_{k + {\bf{1}}}}\) must be computed. Since the data vector arrive at high speed, the computational burden could be serve. But partitioned matrix multiplication helps tremendously. Compute the column-row expansions of \({G_k}\) and \({G_{k + {\bf{1}}}}\) and describe what must be computed in order to update \({G_k}\) to \({G_{k + {\bf{1}}}}\).

Suppose the third column of Bis the sum of the first two columns. What can you say about the third column of AB? Why?

A useful way to test new ideas in matrix algebra, or to make conjectures, is to make calculations with matrices selected at random. Checking a property for a few matrices does not prove that the property holds in general, but it makes the property more believable. Also, if the property is actually false, you may discover this when you make a few calculations.

36. Write the command(s) that will create a \(6 \times 4\) matrix with random entries. In what range of numbers do the entries lie? Tell how to create a \(3 \times 3\) matrix with random integer entries between \( - {\bf{9}}\) and 9. (Hint:If xis a random number such that 0 < x < 1, then \( - 9.5 < 19\left( {x - .5} \right) < 9.5\).

Give a formula for \({\left( {ABx} \right)^T}\), where \({\bf{x}}\) is a vector and \(A\) and \(B\) are matrices of appropriate sizes.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free