Chapter 2: Q2.5-26Q (page 93)
26. (Spectral Factorization) Suppose a \({\bf{3}} \times {\bf{3}}\) matrix Aadmits a factorization as \(A = PD{P^{ - 1}}\), where \(P\)is some invertible \({\bf{3}} \times {\bf{3}}\) matrix and D is the diagonal matrix \(D = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{{{\bf{1}} \mathord{\left/
{\vphantom {{\bf{1}} {\bf{2}}}} \right.
\kern-\nulldelimiterspace} {\bf{2}}}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{{{\bf{1}} \mathord{\left/
{\vphantom {{\bf{1}} {\bf{3}}}} \right.
\kern-\nulldelimiterspace} {\bf{3}}}}\end{aligned}} \right)\)
Show that this factorization is useful when computing high powers of A. Find fairly simple formulas for \({A^{\bf{2}}}\),\({A^{\bf{3}}}\), and \({A^k}\)(k a positive integer), using P and entries in D.
Short Answer
The formulas for \({A^2},{A^3},\) and \({A^k}\) are \({A^2} = P\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{1 \mathord{\left/
{\vphantom {1 4}} \right.
\kern-\nulldelimiterspace} 4}}&0\\0&0&{{1 \mathord{\left/
{\vphantom {1 9}} \right.
\kern-\nulldelimiterspace} 9}}\end{aligned}} \right){P^{ - 1}}\), \({A^3} = P\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{1 \mathord{\left/
{\vphantom {1 8}} \right.
\kern-\nulldelimiterspace} 8}}&0\\0&0&{{1 \mathord{\left/
{\vphantom {1 {27}}} \right.
\kern-\nulldelimiterspace} {27}}}\end{aligned}} \right){P^{ - 1}}\), and \({A^k} = P\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{{{1 \mathord{\left/
{\vphantom {1 2}} \right.
\kern-\nulldelimiterspace} 2}}^k}}&0\\0&0&{{{{1 \mathord{\left/
{\vphantom {1 3}} \right.
\kern-\nulldelimiterspace} 3}}^k}}\end{aligned}} \right){P^{ - 1}}\), respectively.