Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

26. (Spectral Factorization) Suppose a \({\bf{3}} \times {\bf{3}}\) matrix Aadmits a factorization as \(A = PD{P^{ - 1}}\), where \(P\)is some invertible \({\bf{3}} \times {\bf{3}}\) matrix and D is the diagonal matrix \(D = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{{{\bf{1}} \mathord{\left/

{\vphantom {{\bf{1}} {\bf{2}}}} \right.

\kern-\nulldelimiterspace} {\bf{2}}}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{{{\bf{1}} \mathord{\left/

{\vphantom {{\bf{1}} {\bf{3}}}} \right.

\kern-\nulldelimiterspace} {\bf{3}}}}\end{aligned}} \right)\)

Show that this factorization is useful when computing high powers of A. Find fairly simple formulas for \({A^{\bf{2}}}\),\({A^{\bf{3}}}\), and \({A^k}\)(k a positive integer), using P and entries in D.

Short Answer

Expert verified

The formulas for \({A^2},{A^3},\) and \({A^k}\) are \({A^2} = P\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{1 \mathord{\left/

{\vphantom {1 4}} \right.

\kern-\nulldelimiterspace} 4}}&0\\0&0&{{1 \mathord{\left/

{\vphantom {1 9}} \right.

\kern-\nulldelimiterspace} 9}}\end{aligned}} \right){P^{ - 1}}\), \({A^3} = P\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{1 \mathord{\left/

{\vphantom {1 8}} \right.

\kern-\nulldelimiterspace} 8}}&0\\0&0&{{1 \mathord{\left/

{\vphantom {1 {27}}} \right.

\kern-\nulldelimiterspace} {27}}}\end{aligned}} \right){P^{ - 1}}\), and \({A^k} = P\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{{{1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}}^k}}&0\\0&0&{{{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}^k}}\end{aligned}} \right){P^{ - 1}}\), respectively.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Compute \({A^{\bf{2}}}\)

\(\begin{aligned}{c}{A^2} = AA\\ = \left( {PD{P^{ - 1}}} \right)\left( {PD{P^{ - 1}}} \right)\\ = PD\left( {{P^{ - 1}}P} \right)D{P^{ - 1}}\\ = PDID{P^{ - 1}}\\{A^2} = P{D^2}{P^{ - 1}}\end{aligned}\)

First, compute \({D^2}\):

\(\begin{aligned}{c}{D^2} = DD\\ = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}}&0\\0&0&{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}}&0\\0&0&{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{{\left( {{1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}^2}}&0\\0&0&{{{\left( {{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}} \right)}^2}}\end{aligned}} \right)\\{D^2} = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{{{1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}}^2}}&0\\0&0&{{{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}^2}}\end{aligned}} \right)\end{aligned}\)

Then,

\(\begin{aligned}{c}{A^2} = P\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{{{1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}}^2}}&0\\0&0&{{{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}^2}}\end{aligned}} \right){P^{ - 1}}\\ = P\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{1 \mathord{\left/

{\vphantom {1 4}} \right.

\kern-\nulldelimiterspace} 4}}&0\\0&0&{{1 \mathord{\left/

{\vphantom {1 9}} \right.

\kern-\nulldelimiterspace} 9}}\end{aligned}} \right){P^{ - 1}}\end{aligned}\)

02

Compute \({A^{\bf{3}}}\)

\(\begin{aligned}{c}{A^3} = {A^2}A\\ = \left( {P{D^2}{P^{ - 1}}} \right)\left( {PD{P^{ - 1}}} \right)\\ = = P{D^2}\left( {{P^{ - 1}}P} \right)D{P^{ - 1}}\\ = P{D^2}ID{P^{ - 1}}\\{A^3} = P{D^3}{P^{ - 1}}\end{aligned}\)

First, Compute \({D^3}\):

\(\begin{aligned}{c}{D^3} = {D^2}D\\ = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{1 \mathord{\left/

{\vphantom {1 {{2^2}}}} \right.

\kern-\nulldelimiterspace} {{2^2}}}}&0\\0&0&{{1 \mathord{\left/

{\vphantom {1 {{3^2}}}} \right.

\kern-\nulldelimiterspace} {{3^2}}}}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}}&0\\0&0&{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{{\left( {{1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}} \right)}^3}}&0\\0&0&{{{\left( {{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}} \right)}^3}}\end{aligned}} \right)\\{D^3} = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{{{1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}}^3}}&0\\0&0&{{{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}^3}}\end{aligned}} \right)\end{aligned}\)

Then,

\(\begin{aligned}{c}{A^3} = P\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{{{1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}}^3}}&0\\0&0&{{{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}^3}}\end{aligned}} \right){P^{ - 1}}\\ = P\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{1 \mathord{\left/

{\vphantom {1 8}} \right.

\kern-\nulldelimiterspace} 8}}&0\\0&0&{{1 \mathord{\left/

{\vphantom {1 {27}}} \right.

\kern-\nulldelimiterspace} {27}}}\end{aligned}} \right){P^{ - 1}}\end{aligned}\)

03

Compute \({A^k}\)

In general, \({A^k} = P{D^k}{P^{ - 1}}\) with \({D^k} = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{{{1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}}^k}}&0\\0&0&{{{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}^k}}\end{aligned}} \right)\). That is

\({A^k} = P\left( {\begin{aligned}{*{20}{c}}1&0&0\\0&{{{{1 \mathord{\left/

{\vphantom {1 2}} \right.

\kern-\nulldelimiterspace} 2}}^k}}&0\\0&0&{{{{1 \mathord{\left/

{\vphantom {1 3}} \right.

\kern-\nulldelimiterspace} 3}}^k}}\end{aligned}} \right){P^{ - 1}}\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(A = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}&{\bf{5}}\\{ - {\bf{3}}}&{\bf{1}}\end{aligned}} \right)\) and \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}&{ - {\bf{5}}}\\{\bf{3}}&k\end{aligned}} \right)\). What value(s) of \(k\), if any will make \(AB = BA\)?

In exercise 5 and 6, compute the product \(AB\) in two ways: (a) by the definition, where \(A{b_{\bf{1}}}\) and \(A{b_{\bf{2}}}\) are computed separately, and (b) by the row-column rule for computing \(AB\).

\(A = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}&{ - {\bf{2}}}\\{ - {\bf{3}}}&{\bf{0}}\\{\bf{3}}&{\bf{5}}\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{3}}\\{\bf{2}}&{ - {\bf{1}}}\end{aligned}} \right)\)

Suppose Tand Ssatisfy the invertibility equations (1) and (2), where T is a linear transformation. Show directly that Sis a linear transformation. [Hint: Given u, v in \({\mathbb{R}^n}\), let \[{\mathop{\rm x}\nolimits} = S\left( {\mathop{\rm u}\nolimits} \right),{\mathop{\rm y}\nolimits} = S\left( {\mathop{\rm v}\nolimits} \right)\]. Then \(T\left( {\mathop{\rm x}\nolimits} \right) = {\mathop{\rm u}\nolimits} \), \[T\left( {\mathop{\rm y}\nolimits} \right) = {\mathop{\rm v}\nolimits} \]. Why? Apply Sto both sides of the equation \(T\left( {\mathop{\rm x}\nolimits} \right) + T\left( {\mathop{\rm y}\nolimits} \right) = T\left( {{\mathop{\rm x}\nolimits} + y} \right)\). Also, consider \(T\left( {cx} \right) = cT\left( x \right)\).]

Use partitioned matrices to prove by induction that for \(n = 2,3,...\), the \(n \times n\) matrices \(A\) shown below is invertible and \(B\) is its inverse.

\[A = \left[ {\begin{array}{*{20}{c}}1&0&0& \cdots &0\\1&1&0&{}&0\\1&1&1&{}&0\\ \vdots &{}&{}& \ddots &{}\\1&1&1& \ldots &1\end{array}} \right]\]

\[B = \left[ {\begin{array}{*{20}{c}}1&0&0& \cdots &0\\{ - 1}&1&0&{}&0\\0&{ - 1}&1&{}&0\\ \vdots &{}& \ddots & \ddots &{}\\0&{}& \ldots &{ - 1}&1\end{array}} \right]\]

For the induction step, assume A and Bare \(\left( {k + 1} \right) \times \left( {k + 1} \right)\) matrices, and partition Aand B in a form similar to that displayed in Exercises 23.

In Exercises 27 and 28, view vectors in \({\mathbb{R}^n}\) as \(n \times 1\) matrices. For \({\mathop{\rm u}\nolimits} \) and \({\mathop{\rm v}\nolimits} \) in \({\mathbb{R}^n}\), the matrix product \({{\mathop{\rm u}\nolimits} ^T}v\) is a \(1 \times 1\) matrix, called the scalar product, or inner product, of u and v. It is usually written as a single real number without brackets. The matrix product \({{\mathop{\rm uv}\nolimits} ^T}\) is an \(n \times n\) matrix, called the outer product of u and v. The products \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \) and \({{\mathop{\rm uv}\nolimits} ^T}\) will appear later in the text.

27. Let \({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 2}\\3\\{ - 4}\end{aligned}} \right)\) and \({\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}a\\b\\c\end{aligned}} \right)\). Compute \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \), \({{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} \),\({{\mathop{\rm uv}\nolimits} ^T}\), and \({\mathop{\rm v}\nolimits} {{\mathop{\rm u}\nolimits} ^T}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free