Chapter 2: Q2.5-22Q (page 93)
22. (Reduced LU Factorization) With A as in the Practice Problem, i.e., \[A = \left[ {\begin{array}{*{20}{c}}{\bf{2}}&{ - {\bf{4}}}&{ - {\bf{2}}}&{\bf{3}}\\{\bf{6}}&{ - {\bf{9}}}&{ - {\bf{5}}}&{\bf{8}}\\{\bf{2}}&{ - {\bf{7}}}&{ - {\bf{3}}}&{\bf{9}}\\{\bf{4}}&{ - {\bf{2}}}&{ - {\bf{2}}}&{ - {\bf{1}}}\\{ - {\bf{6}}}&{\bf{3}}&{\bf{3}}&{\bf{4}}\end{array}} \right]\], find a \[{\bf{5}} \times {\bf{3}}\] matrix B and a \[{\bf{3}} \times {\bf{4}}\] matrix C such that \[A = BC\]. Generalize this idea to the case where A is \[m \times n\], \[A = LU\], and U has only three nonzero rows.
Short Answer
Matrix \[B = \left[ {\begin{array}{*{20}{c}}1&0&0\\3&1&0\\1&{ - 1}&1\\2&2&{ - 1}\\{ - 3}&{ - 3}&2\end{array}} \right]\] and matrix \[C = \left[ {\begin{array}{*{20}{c}}2&{ - 4}&{ - 2}&3\\0&3&1&{ - 1}\\0&0&0&5\end{array}} \right]\] such that \[A = BC\]. For the case A is \[m \times n\], and U has only three nonzero rows, let B be the first three columns of Land Cbe the first three rows of U.