Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

22. (Reduced LU Factorization) With A as in the Practice Problem, i.e., \[A = \left[ {\begin{array}{*{20}{c}}{\bf{2}}&{ - {\bf{4}}}&{ - {\bf{2}}}&{\bf{3}}\\{\bf{6}}&{ - {\bf{9}}}&{ - {\bf{5}}}&{\bf{8}}\\{\bf{2}}&{ - {\bf{7}}}&{ - {\bf{3}}}&{\bf{9}}\\{\bf{4}}&{ - {\bf{2}}}&{ - {\bf{2}}}&{ - {\bf{1}}}\\{ - {\bf{6}}}&{\bf{3}}&{\bf{3}}&{\bf{4}}\end{array}} \right]\], find a \[{\bf{5}} \times {\bf{3}}\] matrix B and a \[{\bf{3}} \times {\bf{4}}\] matrix C such that \[A = BC\]. Generalize this idea to the case where A is \[m \times n\], \[A = LU\], and U has only three nonzero rows.

Short Answer

Expert verified

Matrix \[B = \left[ {\begin{array}{*{20}{c}}1&0&0\\3&1&0\\1&{ - 1}&1\\2&2&{ - 1}\\{ - 3}&{ - 3}&2\end{array}} \right]\] and matrix \[C = \left[ {\begin{array}{*{20}{c}}2&{ - 4}&{ - 2}&3\\0&3&1&{ - 1}\\0&0&0&5\end{array}} \right]\] such that \[A = BC\]. For the case A is \[m \times n\], and U has only three nonzero rows, let B be the first three columns of Land Cbe the first three rows of U.

Step by step solution

01

Determine L

Since A has five rows, Lshould be \[5 \times 5\]. The first column of L is the first column of A, divided by the top pivot entry 2.

\[L = \left[ {\begin{array}{*{20}{c}}1&0&0&0&0\\3&1&0&0&0\\1&*&1&0&0\\2&*&*&1&0\\{ - 3}&*&*&*&1\end{array}} \right]\]

02

Reduce A into row echelon form

\[A = \left[ {\begin{array}{*{20}{c}}2&{ - 4}&{ - 2}&3\\6&{ - 9}&{ - 5}&8\\2&{ - 7}&{ - 3}&9\\4&{ - 2}&{ - 2}&{ - 1}\\{ - 6}&3&3&4\end{array}} \right]\]

At row 2, multiply row 1 by 3 and subtract it from row 2, i.e., \[{R_2} \to {R_2} - 3{R_1}\]; at row 3, subtract row 1 from row 3 i.e., \[{R_3} \to {R_3} - {R_1}\]; at row 4, multiply row 1 by 2 and subtract it from row 4, i.e., \[{R_4} \to {R_4} - 2{R_1}\]; and at row 5, multiply row 1 by 3 and add it to row 5, i.e., \[{R_5} \to {R_5} + 3{R_1}\]. Therefore,

\[ \sim \left[ {\begin{array}{*{20}{c}}2&{ - 4}&{ - 2}&3\\0&3&1&{ - 1}\\0&{ - 3}&{ - 1}&6\\0&6&2&{ - 7}\\0&{ - 9}&{ - 3}&{13}\end{array}} \right]\]

At row 3, add row 2 to row 3, i.e., \[{R_3} \to {R_2} + {R_3}\]; at row 4, multiply row 2 by 2 and subtract it from row 4, i.e., \[{R_4} \to {R_4} - 2{R_2}\]; and at row 5, multiply row 2 by 3 and add it to row 5, i.e., \[{R_5} \to {R_5} + 3{R_2}\]. Therefore,

\[ \sim \left[ {\begin{array}{*{20}{c}}2&{ - 4}&{ - 2}&3\\0&3&1&{ - 1}\\0&0&0&5\\0&0&0&{ - 5}\\0&0&0&{10}\end{array}} \right]\]

Here, row 3 has a pivot element 5. So, at row 4, add row 3 to row 4, i.e., \[{R_4} \to {R_3} + {R_4}\], and at row 5, multiply row 3 by 2 and subtract it from row 5, i.e., \[{R_5} \to {R_5} - 2{R_3}\]. Then,

\[ \sim \left[ {\begin{array}{*{20}{c}}2&{ - 4}&{ - 2}&3\\0&3&1&{ - 1}\\0&0&0&5\\0&0&0&0\\0&0&0&0\end{array}} \right] = U\]

At each pivot column \[\left[ {\begin{array}{*{20}{c}}2\\6\\2\\4\\{ - 6}\end{array}} \right]\], \[\left[ {\begin{array}{*{20}{c}}3\\{ - 3}\\6\\{ - 9}\end{array}} \right]\], and \[\left[ {\begin{array}{*{20}{c}}5\\{ - 5}\\{10}\end{array}} \right]\], divide them by pivots 2, 3, and 5, respectively. Thus, L can be written as:

\[L = \left[ {\begin{array}{*{20}{c}}1&0&0&0&0\\3&1&0&0&0\\1&{ - 1}&1&0&0\\2&2&{ - 1}&1&0\\{ - 3}&{ - 3}&2&0&1\end{array}} \right]\]

03

Determine B and C

Note that the last two rows of U contain only zeros. So, for LU, the last two columns of L will not be used. Thus, let B be the first three columns of L and C be the first three rows of U. That is

\[B = \left[ {\begin{array}{*{20}{c}}1&0&0\\3&1&0\\1&{ - 1}&1\\2&2&{ - 1}\\{ - 3}&{ - 3}&2\end{array}} \right]\]and \[C = \left[ {\begin{array}{*{20}{c}}2&{ - 4}&{ - 2}&3\\0&3&1&{ - 1}\\0&0&0&5\end{array}} \right]\]

Hence, \[A = LU = BC\].

04

Generalize the idea

For the case A is \[m \times n\], U has only three nonzero rows. So, the first three columns of L are only required. Hence, let B be the first three columns of Land Cbe the first three rows of U.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If Ais an \(n \times n\) matrix and the equation \(A{\bf{x}} = {\bf{b}}\) has more than one solution for some b, then the transformation \({\bf{x}}| \to A{\bf{x}}\) is not one-to-one. What else can you say about this transformation? Justify your answer.

In exercise 11 and 12, mark each statement True or False.Justify each answer.

a. If \(A = \left[ {\begin{array}{*{20}{c}}{{A_{\bf{1}}}}&{{A_{\bf{2}}}}\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}{{B_{\bf{1}}}}&{{B_{\bf{2}}}}\end{array}} \right]\), with \({A_{\bf{1}}}\) and \({A_{\bf{2}}}\) the same sizes as \({B_{\bf{1}}}\) and \({B_{\bf{2}}}\), respectively then \(A + B = \left[ {\begin{array}{*{20}{c}}{{A_1} + {B_1}}&{{A_{\bf{2}}} + {B_{\bf{2}}}}\end{array}} \right]\).

b. If \(A = \left[ {\begin{array}{*{20}{c}}{{A_{{\bf{11}}}}}&{{A_{{\bf{12}}}}}\\{{A_{{\bf{21}}}}}&{{A_{{\bf{22}}}}}\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}{{B_1}}\\{{B_{\bf{2}}}}\end{array}} \right]\), then the partitions of \(A\) and \(B\) are comfortable for block multiplication.

Exercises 15 and 16 concern arbitrary matrices A, B, and Cfor which the indicated sums and products are defined. Mark each statement True or False. Justify each answer.

16. a. If A and B are \({\bf{3}} \times {\bf{3}}\) and \(B = \left( {\begin{aligned}{*{20}{c}}{{{\bf{b}}_1}}&{{{\bf{b}}_2}}&{{{\bf{b}}_3}}\end{aligned}} \right)\), then \(AB = \left( {A{{\bf{b}}_1} + A{{\bf{b}}_2} + A{{\bf{b}}_3}} \right)\).

b. The second row of ABis the second row of Amultiplied on the right by B.

c. \(\left( {AB} \right)C = \left( {AC} \right)B\)

d. \({\left( {AB} \right)^T} = {A^T}{B^T}\)

e. The transpose of a sum of matrices equals the sum of their transposes.

If A, B, and X are \(n \times n\) invertible matrices, does the equation \({C^{ - 1}}\left( {A + X} \right){B^{ - 1}} = {I_n}\) have a solution, X? If so, find it.

Suppose P is invertible and \(A = PB{P^{ - 1}}\). Solve for Bin terms of A.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free