Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

[M] For block operations, it may be necessary to access or enter submatrices of a large matrix. Describe the functions or commands of your matrix program that accomplish the following tasks. Suppose A is a \(20 \times 30\) matrix.

  1. Display the submatrix of Afrom rows 15 to 20 and columns 5 to 10.
  2. Insert a \(5 \times 10\) matrix B into A, beginning at row 10 and column 20.
  3. Create a \(50 \times 50\) matrix of the form \(B = \left[ {\begin{array}{*{20}{c}}A&0\\0&{{A^T}}\end{array}} \right]\).

[Note: It may not be necessary to specify the zero blocks in B.]

Short Answer

Expert verified
  1. \( > > {\mathop{\rm A}\nolimits} \left( {15:20,\,\,5:10} \right)\)
  2. \( > > {\mathop{\rm A}\nolimits} \left( {10:14,20:29} \right) = {\mathop{\rm B}\nolimits} ;\)
  3. \[ > > {\mathop{\rm B}\nolimits} = \left[ {{\mathop{\rm A}\nolimits} \,\,{\mathop{\rm zeros}\nolimits} \left( {30,20} \right);\,\,{\mathop{\rm zeros}\nolimits} \left( {20,30} \right)A'} \right];\]

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Display the submatrix of A from rows 15 to 20 and columns 5 to 10

a)

Use the MATLAB code to display the submatrix of A from rows 15 to 20, as shown below:

\( > > {\mathop{\rm A}\nolimits} \left( {15:20,\,\,5:10} \right)\)

02

Insert a \(5 \times 10\) matrix B into A

b)

Use the MATLAB code to insert a\(5 \times 10\)matrix B into A as shown below:

\( > > {\mathop{\rm A}\nolimits} \left( {10:14,20:29} \right) = {\mathop{\rm B}\nolimits} ;\)

03

Create a \(50 \times 10\) matrix

c)

Use the MATLAB code to build matrix \(B\)out of four blocks, as shown below:

\[ > > {\mathop{\rm B}\nolimits} = \left[ {{\mathop{\rm A}\nolimits} \,\,{\mathop{\rm zeros}\nolimits} \left( {30,20} \right);\,\,{\mathop{\rm zeros}\nolimits} \left( {20,30} \right)A'} \right];\]

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exercises 15 and 16 concern arbitrary matrices A, B, and Cfor which the indicated sums and products are defined. Mark each statement True or False. Justify each answer.

15. a. If A and B are \({\bf{2}} \times {\bf{2}}\) with columns \({{\bf{a}}_1},{{\bf{a}}_2}\) and \({{\bf{b}}_1},{{\bf{b}}_2}\) respectively, then \(AB = \left( {\begin{aligned}{*{20}{c}}{{{\bf{a}}_1}{{\bf{b}}_1}}&{{{\bf{a}}_2}{{\bf{b}}_2}}\end{aligned}} \right)\).

b. Each column of ABis a linear combination of the columns of Busing weights from the corresponding column of A.

c. \(AB + AC = A\left( {B + C} \right)\)

d. \({A^T} + {B^T} = {\left( {A + B} \right)^T}\)

e. The transpose of a product of matrices equals the product of their transposes in the same order.

Suppose Ais an \(n \times n\) matrix with the property that the equation \(Ax = 0\)has only the trivial solution. Without using the Invertible Matrix Theorem, explain directly why the equation \(Ax = b\) must have a solution for each b in \({\mathbb{R}^n}\).

Suppose the third column of Bis the sum of the first two columns. What can you say about the third column of AB? Why?

Let \(X\) be \(m \times n\) data matrix such that \({X^T}X\) is invertible., and let \(M = {I_m} - X{\left( {{X^T}X} \right)^{ - {\bf{1}}}}{X^T}\). Add a column \({x_{\bf{0}}}\) to the data and form

\(W = \left[ {\begin{array}{*{20}{c}}X&{{x_{\bf{0}}}}\end{array}} \right]\)

Compute \({W^T}W\). The \(\left( {{\bf{1}},{\bf{1}}} \right)\) entry is \({X^T}X\). Show that the Schur complement (Exercise 15) of \({X^T}X\) can be written in the form \({\bf{x}}_{\bf{0}}^TM{{\bf{x}}_{\bf{0}}}\). It can be shown that the quantity \({\left( {{\bf{x}}_{\bf{0}}^TM{{\bf{x}}_{\bf{0}}}} \right)^{ - {\bf{1}}}}\) is the \(\left( {{\bf{2}},{\bf{2}}} \right)\)-entry in \({\left( {{W^T}W} \right)^{ - {\bf{1}}}}\). This entry has a useful statistical interpretation, under appropriate hypotheses.

In the study of engineering control of physical systems, a standard set of differential equations is transformed by Laplace transforms into the following system of linear equations:

\(\left[ {\begin{array}{*{20}{c}}{A - s{I_n}}&B\\C&{{I_m}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\bf{x}}\\{\bf{u}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{y}}\end{array}} \right]\)

Where \(A\) is \(n \times n\), \(B\) is \(n \times m\), \(C\) is \(m \times n\), and \(s\) is a variable. The vector \({\bf{u}}\) in \({\mathbb{R}^m}\) is the “input” to the system, \({\bf{y}}\) in \({\mathbb{R}^m}\) is the “output” and \({\bf{x}}\) in \({\mathbb{R}^n}\) is the “state” vector. (Actually, the vectors \({\bf{x}}\), \({\bf{u}}\) and \({\bf{v}}\) are functions of \(s\), but we suppress this fact because it does not affect the algebraic calculations in Exercises 19 and 20.)

3. Find the inverse of the matrix \(\left( {\begin{aligned}{*{20}{c}}{\bf{8}}&{\bf{5}}\\{ - {\bf{7}}}&{ - {\bf{5}}}\end{aligned}} \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free