Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use partitioned matrices to prove by induction that for \(n = 2,3,...\), the \(n \times n\) matrices \(A\) shown below is invertible and \(B\) is its inverse.

\[A = \left[ {\begin{array}{*{20}{c}}1&0&0& \cdots &0\\1&1&0&{}&0\\1&1&1&{}&0\\ \vdots &{}&{}& \ddots &{}\\1&1&1& \ldots &1\end{array}} \right]\]

\[B = \left[ {\begin{array}{*{20}{c}}1&0&0& \cdots &0\\{ - 1}&1&0&{}&0\\0&{ - 1}&1&{}&0\\ \vdots &{}& \ddots & \ddots &{}\\0&{}& \ldots &{ - 1}&1\end{array}} \right]\]

For the induction step, assume A and Bare \(\left( {k + 1} \right) \times \left( {k + 1} \right)\) matrices, and partition Aand B in a form similar to that displayed in Exercises 23.

Short Answer

Expert verified

It is proved that by induction, the \(n \times n\) matrices are invertible and \(B\) is their inverse.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Identify partitions A and B in exercise 23

The partition matrices are \({A_1} = \left[ {\begin{array}{*{20}{c}}a&{{0^T}}\\0&A\end{array}} \right],{B_1} = \left[ {\begin{array}{*{20}{c}}b&{{0^T}}\\0&A\end{array}} \right]\).

Here, v and w are in \({\mathbb{R}^k}\); \(A\) and B are \(k \times k\) lower triangular matrices, and \(a\), \(b\) are scalars.

02

Show by induction that \(n \times n\) matrices A are invertible and B is their inverse

Consider the matrices \[{A_n} = \left[ {\begin{array}{*{20}{c}}1&0&0& \cdots &0\\1&1&0&{}&0\\1&1&1&{}&0\\ \vdots &{}&{}& \ddots &{}\\1&1&1& \ldots &1\end{array}} \right]\] and \[{B_n} = \left[ {\begin{array}{*{20}{c}}1&0&0& \cdots &0\\{ - 1}&1&0&{}&0\\0&{ - 1}&1&{}&0\\ \vdots &{}& \ddots & \ddots &{}\\0&{}& \ldots &{ - 1}&1\end{array}} \right]\].

As a result of direct calculation, \({A_2}{B_2} = {I_2}\). Suppose that for \[{\mathop{\rm n}\nolimits} = k\], the matrix \({A_k}{B_k}\) is \({I_k}\) , and it is written as

\({A_{k + 1}} = \left[ {\begin{array}{*{20}{c}}1&{{0^T}}\\{\mathop{\rm v}\nolimits} &{{A_k}}\end{array}} \right]\)and \({B_{k + 1}} = \left[ {\begin{array}{*{20}{c}}1&{{0^T}}\\{\mathop{\rm v}\nolimits} &{{B_k}}\end{array}} \right]\).

Here, \({\mathop{\rm v}\nolimits} \) and \({\mathop{\rm w}\nolimits} \) are in \({\mathbb{R}^k}\) , \({v^T} = \left[ {\begin{array}{*{20}{c}}1&1&{...}&1\end{array}} \right]\) and \({w^T} = \left[ {\begin{array}{*{20}{c}}{ - 1}&0&{...}&0\end{array}} \right]\). Hence,

\[\begin{array}{c}{A_{k + 1}}{B_{k + 1}} = \left[ {\begin{array}{*{20}{c}}1&{{0^T}}\\{\mathop{\rm v}\nolimits} &{{A_k}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&{{0^T}}\\{\mathop{\rm w}\nolimits} &{{A_k}}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{1 + {0^T}{\mathop{\rm w}\nolimits} }&{{0^T} + {0^T}{B_K}}\\{{\mathop{\rm v}\nolimits} + {A_K}{\mathop{\rm w}\nolimits} }&{{\mathop{\rm v}\nolimits} {0^T} + {A_K}{B_K}}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}1&{{0^T}}\\0&{{I_k}}\end{array}} \right]\\ = {I_{k + 1}}.\end{array}\]

The \(\left( {2,1} \right)\)-entry is 0 since v equals the first column of \({A_k}\). \({A_k}{\mathop{\rm w}\nolimits} \) is \( - 1\) times the first column of \({A_k}\). For all \(n \ge 2\), \({A_n}{B_n} = {I_n}\) according to the principle of induction. The invertible matrix theorem demonstrates that these matrices are invertible because \({A_n}\) and \({B_n}\) are square matrices. Thus, \({B_n} = A_n^{ - 1}\).

Hence, it is proved that by induction, the \(n \times n\) matrices are invertible and \(B\)is their inverse.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free