Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(X\) be \(m \times n\) data matrix such that \({X^T}X\) is invertible., and let \(M = {I_m} - X{\left( {{X^T}X} \right)^{ - {\bf{1}}}}{X^T}\). Add a column \({x_{\bf{0}}}\) to the data and form

\(W = \left[ {\begin{array}{*{20}{c}}X&{{x_{\bf{0}}}}\end{array}} \right]\)

Compute \({W^T}W\). The \(\left( {{\bf{1}},{\bf{1}}} \right)\) entry is \({X^T}X\). Show that the Schur complement (Exercise 15) of \({X^T}X\) can be written in the form \({\bf{x}}_{\bf{0}}^TM{{\bf{x}}_{\bf{0}}}\). It can be shown that the quantity \({\left( {{\bf{x}}_{\bf{0}}^TM{{\bf{x}}_{\bf{0}}}} \right)^{ - {\bf{1}}}}\) is the \(\left( {{\bf{2}},{\bf{2}}} \right)\)-entry in \({\left( {{W^T}W} \right)^{ - {\bf{1}}}}\). This entry has a useful statistical interpretation, under appropriate hypotheses.

In the study of engineering control of physical systems, a standard set of differential equations is transformed by Laplace transforms into the following system of linear equations:

\(\left[ {\begin{array}{*{20}{c}}{A - s{I_n}}&B\\C&{{I_m}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\bf{x}}\\{\bf{u}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{y}}\end{array}} \right]\)

Where \(A\) is \(n \times n\), \(B\) is \(n \times m\), \(C\) is \(m \times n\), and \(s\) is a variable. The vector \({\bf{u}}\) in \({\mathbb{R}^m}\) is the “input” to the system, \({\bf{y}}\) in \({\mathbb{R}^m}\) is the “output” and \({\bf{x}}\) in \({\mathbb{R}^n}\) is the “state” vector. (Actually, the vectors \({\bf{x}}\), \({\bf{u}}\) and \({\bf{v}}\) are functions of \(s\), but we suppress this fact because it does not affect the algebraic calculations in Exercises 19 and 20.)

Short Answer

Expert verified

\({\bf{x}}_0^TM{{\bf{x}}_0}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Find the value of \({W^T}W\)

Given, \(W = \left[ {\begin{array}{*{20}{c}}X&{{{\bf{x}}_0}}\end{array}} \right]\).

Then,

\(\begin{array}{c}{W^T}W = \left[ {\begin{array}{*{20}{c}}{{X^T}}\\{{\bf{x}}_0^T}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}X&{{{\bf{x}}_0}}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{{X^T}X}&{{X^T}{{\bf{x}}_0}}\\{{\bf{x}}_0^TX}&{{\bf{x}}_0^T{{\bf{x}}_0}}\end{array}} \right].\end{array}\)

02

Find the Schur complement \(S\)

By the formula \(S\)(Schur complement) from Exercise 15,

\(\begin{array}{c}S = {\bf{x}}_0^T{{\bf{x}}_0} - {\bf{x}}_0^TX{\left( {{X^T}X} \right)^{ - 1}}{X^T}{{\bf{x}}_0}\\ = {\bf{x}}_0^T\left( {{I_m} - X{{\left( {{X^T}X} \right)}^{ - 1}}{X^T}} \right){{\bf{x}}_0}\\ = {\bf{x}}_0^TM{{\bf{x}}_0}.\end{array}\)

So, the value of \(S\) is \({\bf{x}}_0^TM{{\bf{x}}_0}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A useful way to test new ideas in matrix algebra, or to make conjectures, is to make calculations with matrices selected at random. Checking a property for a few matrices does not prove that the property holds in general, but it makes the property more believable. Also, if the property is actually false, you may discover this when you make a few calculations.

36. Write the command(s) that will create a \(6 \times 4\) matrix with random entries. In what range of numbers do the entries lie? Tell how to create a \(3 \times 3\) matrix with random integer entries between \( - {\bf{9}}\) and 9. (Hint:If xis a random number such that 0 < x < 1, then \( - 9.5 < 19\left( {x - .5} \right) < 9.5\).

Suppose \({A_{{\bf{11}}}}\) is invertible. Find \(X\) and \(Y\) such that

\[\left[ {\begin{array}{*{20}{c}}{{A_{{\bf{11}}}}}&{{A_{{\bf{12}}}}}\\{{A_{{\bf{21}}}}}&{{A_{{\bf{22}}}}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\X&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{A_{{\bf{11}}}}}&{\bf{0}}\\{\bf{0}}&S\end{array}} \right]\left[ {\begin{array}{*{20}{c}}I&Y\\{\bf{0}}&I\end{array}} \right]\]

Where \(S = {A_{{\bf{22}}}} - {A_{21}}A_{{\bf{11}}}^{ - {\bf{1}}}{A_{{\bf{12}}}}\). The matrix \(S\) is called the Schur complement of \({A_{{\bf{11}}}}\). Likewise, if \({A_{{\bf{22}}}}\) is invertible, the matrix \({A_{{\bf{11}}}} - {A_{{\bf{12}}}}A_{{\bf{22}}}^{ - {\bf{1}}}{A_{{\bf{21}}}}\) is called the Schur complement of \({A_{{\bf{22}}}}\). Such expressions occur frequently in the theory of systems engineering, and elsewhere.

Let \(A = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{2}}\\{\bf{5}}&{{\bf{12}}}\end{aligned}} \right),{b_{\bf{1}}} = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{1}}}\\{\bf{3}}\end{aligned}} \right),{b_{\bf{2}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}\\{ - {\bf{5}}}\end{aligned}} \right),{b_{\bf{3}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{\bf{6}}\end{aligned}} \right),\) and \({b_{\bf{4}}} = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}\\{\bf{5}}\end{aligned}} \right)\).

  1. Find \({A^{ - {\bf{1}}}}\), and use it to solve the four equations \(Ax = {b_{\bf{1}}},\)\(Ax = {b_2},\)\(Ax = {b_{\bf{3}}},\)\(Ax = {b_{\bf{4}}}\)\(\)
  2. The four equations in part (a) can be solved by the same set of row operations, since the coefficient matrix is the same in each case. Solve the four equations in part (a) by row reducing the augmented matrix \(\left( {\begin{aligned}{*{20}{c}}A&{{b_{\bf{1}}}}&{{b_{\bf{2}}}}&{{b_{\bf{3}}}}&{{b_{\bf{4}}}}\end{aligned}} \right)\).

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1–4.

3. \[\left[ {\begin{array}{*{20}{c}}{\bf{0}}&I\\I&{\bf{0}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}W&X\\Y&Z\end{array}} \right]\]

Suppose Tand U are linear transformations from \({\mathbb{R}^n}\) to \({\mathbb{R}^n}\) such that \(T\left( {U{\mathop{\rm x}\nolimits} } \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\) . Is it true that \(U\left( {T{\mathop{\rm x}\nolimits} } \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\)? Why or why not?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free