Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(X\) be \(m \times n\) data matrix such that \({X^T}X\) is invertible., and let \(M = {I_m} - X{\left( {{X^T}X} \right)^{ - {\bf{1}}}}{X^T}\). Add a column \({x_{\bf{0}}}\) to the data and form

\(W = \left[ {\begin{array}{*{20}{c}}X&{{x_{\bf{0}}}}\end{array}} \right]\)

Compute \({W^T}W\). The \(\left( {{\bf{1}},{\bf{1}}} \right)\) entry is \({X^T}X\). Show that the Schur complement (Exercise 15) of \({X^T}X\) can be written in the form \({\bf{x}}_{\bf{0}}^TM{{\bf{x}}_{\bf{0}}}\). It can be shown that the quantity \({\left( {{\bf{x}}_{\bf{0}}^TM{{\bf{x}}_{\bf{0}}}} \right)^{ - {\bf{1}}}}\) is the \(\left( {{\bf{2}},{\bf{2}}} \right)\)-entry in \({\left( {{W^T}W} \right)^{ - {\bf{1}}}}\). This entry has a useful statistical interpretation, under appropriate hypotheses.

In the study of engineering control of physical systems, a standard set of differential equations is transformed by Laplace transforms into the following system of linear equations:

\(\left[ {\begin{array}{*{20}{c}}{A - s{I_n}}&B\\C&{{I_m}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\bf{x}}\\{\bf{u}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{y}}\end{array}} \right]\)

Where \(A\) is \(n \times n\), \(B\) is \(n \times m\), \(C\) is \(m \times n\), and \(s\) is a variable. The vector \({\bf{u}}\) in \({\mathbb{R}^m}\) is the “input” to the system, \({\bf{y}}\) in \({\mathbb{R}^m}\) is the “output” and \({\bf{x}}\) in \({\mathbb{R}^n}\) is the “state” vector. (Actually, the vectors \({\bf{x}}\), \({\bf{u}}\) and \({\bf{v}}\) are functions of \(s\), but we suppress this fact because it does not affect the algebraic calculations in Exercises 19 and 20.)

Short Answer

Expert verified

\({\bf{x}}_0^TM{{\bf{x}}_0}\)

Step by step solution

01

Find the value of \({W^T}W\)

Given, \(W = \left[ {\begin{array}{*{20}{c}}X&{{{\bf{x}}_0}}\end{array}} \right]\).

Then,

\(\begin{array}{c}{W^T}W = \left[ {\begin{array}{*{20}{c}}{{X^T}}\\{{\bf{x}}_0^T}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}X&{{{\bf{x}}_0}}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{{X^T}X}&{{X^T}{{\bf{x}}_0}}\\{{\bf{x}}_0^TX}&{{\bf{x}}_0^T{{\bf{x}}_0}}\end{array}} \right].\end{array}\)

02

Find the Schur complement \(S\)

By the formula \(S\)(Schur complement) from Exercise 15,

\(\begin{array}{c}S = {\bf{x}}_0^T{{\bf{x}}_0} - {\bf{x}}_0^TX{\left( {{X^T}X} \right)^{ - 1}}{X^T}{{\bf{x}}_0}\\ = {\bf{x}}_0^T\left( {{I_m} - X{{\left( {{X^T}X} \right)}^{ - 1}}{X^T}} \right){{\bf{x}}_0}\\ = {\bf{x}}_0^TM{{\bf{x}}_0}.\end{array}\)

So, the value of \(S\) is \({\bf{x}}_0^TM{{\bf{x}}_0}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

[M] For block operations, it may be necessary to access or enter submatrices of a large matrix. Describe the functions or commands of your matrix program that accomplish the following tasks. Suppose A is a \(20 \times 30\) matrix.

  1. Display the submatrix of Afrom rows 15 to 20 and columns 5 to 10.
  2. Insert a \(5 \times 10\) matrix B into A, beginning at row 10 and column 20.
  3. Create a \(50 \times 50\) matrix of the form \(B = \left[ {\begin{array}{*{20}{c}}A&0\\0&{{A^T}}\end{array}} \right]\).

[Note: It may not be necessary to specify the zero blocks in B.]

Suppose the last column of ABis entirely zero but Bitself has no column of zeros. What can you sayaboutthe columns of A?

Suppose A, B, and Care \(n \times n\) matrices with A, X, and \(A - AX\) invertible, and suppose

\({\left( {A - AX} \right)^{ - 1}} = {X^{ - 1}}B\) …(3)

  1. Explain why B is invertible.
  2. Solve (3) for X. If you need to invert a matrix, explain why that matrix is invertible.

Use partitioned matrices to prove by induction that the product of two lower triangular matrices is also lower triangular. [Hint: \(A\left( {k + 1} \right) \times \left( {k + 1} \right)\) matrix \({A_1}\) can be written in the form below, where \[a\] is a scalar, v is in \({\mathbb{R}^k}\), and Ais a \(k \times k\) lower triangular matrix. See the study guide for help with induction.]

\({A_1} = \left[ {\begin{array}{*{20}{c}}a&{{0^T}}\\0&A\end{array}} \right]\).

Let Abe an invertible \(n \times n\) matrix, and let \(B\) be an \(n \times p\) matrix. Explain why \({A^{ - 1}}B\) can be computed by row reduction: If\(\left( {\begin{aligned}{*{20}{c}}A&B\end{aligned}} \right) \sim ... \sim \left( {\begin{aligned}{*{20}{c}}I&X\end{aligned}} \right)\), then \(X = {A^{ - 1}}B\).

If Ais larger than \(2 \times 2\), then row reduction of \(\left( {\begin{aligned}{*{20}{c}}A&B\end{aligned}} \right)\) is much faster than computing both \({A^{ - 1}}\) and \({A^{ - 1}}B\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free