Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(A = \left[ {\begin{array}{*{20}{c}}B&{\bf{0}}\\{\bf{0}}&C\end{array}} \right]\), where \(B\) and \(C\) are square. Show that \(A\)is invertible if an only if both \(B\) and \(C\) are invertible.

Short Answer

Expert verified

\(A\) is invertible if and only if \(B\) and \(C\) are invertible.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Analyze matrix \(A\)

Let the inverse of matrix\(A\) be

\({A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}D&E\\F&G\end{array}} \right]\).

Then,

\(\begin{array}{c}A{A^{ - 1}} = I\\\left[ {\begin{array}{*{20}{c}}B&0\\0&C\end{array}} \right]\left[ {\begin{array}{*{20}{c}}D&E\\F&G\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&0\\0&I\end{array}} \right]\\\left[ {\begin{array}{*{20}{c}}{BD}&{BE}\\{CF}&{CG}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&0\\0&I\end{array}} \right].\end{array}\)

02

Use the property of inverse matrix

Since \(B\) is a square and \(BD = I\), \(B\) is invertible.Similar is the case for \(C\).

So, \({A^{ - 1}}\) can be expressed as

\(\begin{array}{c}{A^{ - 1}} = {\left[ {\begin{array}{*{20}{c}}B&0\\0&C\end{array}} \right]^{ - 1}}\\ = \left[ {\begin{array}{*{20}{c}}{{B^{ - 1}}}&0\\0&{{C^{ - 1}}}\end{array}} \right].\end{array}\)

Hence, it is proved that \(A\) is invertible if and only if \(B\) and \(C\) are invertible.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In exercise 5 and 6, compute the product \(AB\) in two ways: (a) by the definition, where \(A{b_{\bf{1}}}\) and \(A{b_{\bf{2}}}\) are computed separately, and (b) by the row-column rule for computing \(AB\).

\(A = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}&{ - {\bf{2}}}\\{ - {\bf{3}}}&{\bf{0}}\\{\bf{3}}&{\bf{5}}\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{3}}\\{\bf{2}}&{ - {\bf{1}}}\end{aligned}} \right)\)

Suppose Aand Bare \(n \times n\), Bis invertible, and ABis invertible. Show that Ais invertible. (Hint: Let C=AB, and solve this equation for A.)

In Exercises 1 and 2, compute each matrix sum or product if it is defined. If an expression is undefined, explain why. Let

\(A = \left( {\begin{aligned}{*{20}{c}}2&0&{ - 1}\\4&{ - 5}&2\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}7&{ - 5}&1\\1&{ - 4}&{ - 3}\end{aligned}} \right)\), \(C = \left( {\begin{aligned}{*{20}{c}}1&2\\{ - 2}&1\end{aligned}} \right)\), \(D = \left( {\begin{aligned}{*{20}{c}}3&5\\{ - 1}&4\end{aligned}} \right)\) and \(E = \left( {\begin{aligned}{*{20}{c}}{ - 5}\\3\end{aligned}} \right)\)

\( - 2A\), \(B - 2A\), \(AC\), \(CD\).

In Exercise 10 mark each statement True or False. Justify each answer.

10. a. A product of invertible \(n \times n\) matrices is invertible, and the inverse of the product of their inverses in the same order.

b. If A is invertible, then the inverse of \({A^{ - {\bf{1}}}}\) is A itself.

c. If \(A = \left( {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right)\) and \(ad = bc\), then A is not invertible.

d. If A can be row reduced to the identity matrix, then A must be invertible.

e. If A is invertible, then elementary row operations that reduce A to the identity \({I_n}\) also reduce \({A^{ - {\bf{1}}}}\) to \({I_n}\).

Let \(S = \left( {\begin{aligned}{*{20}{c}}0&1&0&0&0\\0&0&1&0&0\\0&0&0&1&0\\0&0&0&0&1\\0&0&0&0&0\end{aligned}} \right)\). Compute \({S^k}\) for \(k = {\bf{2}},...,{\bf{6}}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free