Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In exercise 11 and 12, mark each statement True or False.Justify each answer.

a. If \(A = \left[ {\begin{array}{*{20}{c}}{{A_{\bf{1}}}}&{{A_{\bf{2}}}}\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}{{B_{\bf{1}}}}&{{B_{\bf{2}}}}\end{array}} \right]\), with \({A_{\bf{1}}}\) and \({A_{\bf{2}}}\) the same sizes as \({B_{\bf{1}}}\) and \({B_{\bf{2}}}\), respectively then \(A + B = \left[ {\begin{array}{*{20}{c}}{{A_1} + {B_1}}&{{A_{\bf{2}}} + {B_{\bf{2}}}}\end{array}} \right]\).

b. If \(A = \left[ {\begin{array}{*{20}{c}}{{A_{{\bf{11}}}}}&{{A_{{\bf{12}}}}}\\{{A_{{\bf{21}}}}}&{{A_{{\bf{22}}}}}\end{array}} \right]\) and \(B = \left[ {\begin{array}{*{20}{c}}{{B_1}}\\{{B_{\bf{2}}}}\end{array}} \right]\), then the partitions of \(A\) and \(B\) are comfortable for block multiplication.

Short Answer

Expert verified

a. True

b. False

Step by step solution

01

Substitute the expression \(A + B\)

Calculate the value of the expression \(A + B\).

\(A + B = \left[ {\begin{array}{*{20}{c}}{{A_1}}&{{A_2}}\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}{{B_1}}&{{B_2}}\end{array}} \right]\)

02

Simplify the expression of \(A + B\)

Using the addition of matrices for \(A + B\), you get

\(\begin{array}{c}A + B = \left[ {\begin{array}{*{20}{c}}{{A_1}}&{{A_2}}\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}{{B_1}}&{{B_2}}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{{A_1} + {B_1}}&{{A_2} + {B_2}}\end{array}} \right].\end{array}\)

So, the given statement is true.

03

Check the block multiplication for \(A + B\)

Partition matrices can be multiplied by the usualrow-column rule. If the block entries are scalars when \(AB\) exists, the column partition of \(A\) matches the row partition of \(B\).

For the given matrices, the column partitionof \(A\) does not match with the row partition. Therefore, the given statement is false.

So, statement (a) is True, (b) is False.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose \(CA = {I_n}\)(the \(n \times n\) identity matrix). Show that the equation \(Ax = 0\) has only the trivial solution. Explain why Acannot have more columns than rows.

In Exercises 27 and 28, view vectors in \({\mathbb{R}^n}\) as \(n \times 1\) matrices. For \({\mathop{\rm u}\nolimits} \) and \({\mathop{\rm v}\nolimits} \) in \({\mathbb{R}^n}\), the matrix product \({{\mathop{\rm u}\nolimits} ^T}v\) is a \(1 \times 1\) matrix, called the scalar product, or inner product, of u and v. It is usually written as a single real number without brackets. The matrix product \({{\mathop{\rm uv}\nolimits} ^T}\) is an \(n \times n\) matrix, called the outer product of u and v. The products \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \) and \({{\mathop{\rm uv}\nolimits} ^T}\) will appear later in the text.

27. Let \({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 2}\\3\\{ - 4}\end{aligned}} \right)\) and \({\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}a\\b\\c\end{aligned}} \right)\). Compute \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \), \({{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} \),\({{\mathop{\rm uv}\nolimits} ^T}\), and \({\mathop{\rm v}\nolimits} {{\mathop{\rm u}\nolimits} ^T}\).

Let \(X\) be \(m \times n\) data matrix such that \({X^T}X\) is invertible., and let \(M = {I_m} - X{\left( {{X^T}X} \right)^{ - {\bf{1}}}}{X^T}\). Add a column \({x_{\bf{0}}}\) to the data and form

\(W = \left[ {\begin{array}{*{20}{c}}X&{{x_{\bf{0}}}}\end{array}} \right]\)

Compute \({W^T}W\). The \(\left( {{\bf{1}},{\bf{1}}} \right)\) entry is \({X^T}X\). Show that the Schur complement (Exercise 15) of \({X^T}X\) can be written in the form \({\bf{x}}_{\bf{0}}^TM{{\bf{x}}_{\bf{0}}}\). It can be shown that the quantity \({\left( {{\bf{x}}_{\bf{0}}^TM{{\bf{x}}_{\bf{0}}}} \right)^{ - {\bf{1}}}}\) is the \(\left( {{\bf{2}},{\bf{2}}} \right)\)-entry in \({\left( {{W^T}W} \right)^{ - {\bf{1}}}}\). This entry has a useful statistical interpretation, under appropriate hypotheses.

In the study of engineering control of physical systems, a standard set of differential equations is transformed by Laplace transforms into the following system of linear equations:

\(\left[ {\begin{array}{*{20}{c}}{A - s{I_n}}&B\\C&{{I_m}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\bf{x}}\\{\bf{u}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{y}}\end{array}} \right]\)

Where \(A\) is \(n \times n\), \(B\) is \(n \times m\), \(C\) is \(m \times n\), and \(s\) is a variable. The vector \({\bf{u}}\) in \({\mathbb{R}^m}\) is the โ€œinputโ€ to the system, \({\bf{y}}\) in \({\mathbb{R}^m}\) is the โ€œoutputโ€ and \({\bf{x}}\) in \({\mathbb{R}^n}\) is the โ€œstateโ€ vector. (Actually, the vectors \({\bf{x}}\), \({\bf{u}}\) and \({\bf{v}}\) are functions of \(s\), but we suppress this fact because it does not affect the algebraic calculations in Exercises 19 and 20.)

In the rest of this exercise set and in those to follow, you should assume that each matrix expression is defined. That is, the sizes of the matrices (and vectors) involved match appropriately.

Let \(A = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}&{ - {\bf{1}}}\\{\bf{5}}&{ - {\bf{2}}}\end{aligned}} \right)\). Compute \({\bf{3}}{I_{\bf{2}}} - A\) and \(\left( {{\bf{3}}{I_{\bf{2}}}} \right)A\).

Use the inverse found in Exercise 3 to solve the system

\(\begin{aligned}{l}{\bf{8}}{{\bf{x}}_{\bf{1}}} + {\bf{5}}{{\bf{x}}_{\bf{2}}} = - {\bf{9}}\\ - {\bf{7}}{{\bf{x}}_{\bf{1}}} - {\bf{5}}{{\bf{x}}_{\bf{2}}} = {\bf{11}}\end{aligned}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free