Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The inverse of \(\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}&{\bf{0}}\\C&I&{\bf{0}}\\A&B&I\end{array}} \right]\) is \(\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}&{\bf{0}}\\Z&I&{\bf{0}}\\X&Y&I\end{array}} \right]\). Find X, Y, and Z.

Short Answer

Expert verified

The values are \(X = BC - A\), \[Y = - B\], and \[Z = - C\].

Step by step solution

01

State the row-column rule

If the sum of the products of matching entries from row\(i\)of matrix A and column\(j\)of matrix B equals the item in row\(i\)and column\(j\)of AB, then it can be said that product AB is defined.

The product is\({\left( {AB} \right)_{ij}} = {a_{i1}}{b_{1j}} + {a_{i2}}{b_{2j}} + ... + {a_{in}}{b_{nj}}\).

Also, the product of matrix A with its inverse always gives theidentity matrix I.

02

Obtain the product

Compute the product of\(\left[ {\begin{array}{*{20}{c}}I&0&0\\C&I&0\\A&B&I\end{array}} \right]\)with\(\left[ {\begin{array}{*{20}{c}}I&0&0\\Z&I&0\\X&Y&I\end{array}} \right]\) to get theidentity matrix\(\left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]\).

\(\begin{array}{c}\left[ {\begin{array}{*{20}{c}}I&0&0\\C&I&0\\A&B&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}I&0&0\\Z&I&0\\X&Y&I\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&0&0\\0&I&0\\0&0&I\end{array}} \right]\\\left[ {\begin{array}{*{20}{c}}{I\left( I \right) + 0\left( Z \right) + 0\left( X \right)}&{I\left( 0 \right) + 0\left( I \right) + 0\left( Y \right)}&{I\left( 0 \right) + 0\left( 0 \right) + 0\left( I \right)}\\{C\left( I \right) + I\left( Z \right) + 0\left( X \right)}&{C\left( 0 \right) + I\left( I \right) + 0\left( Y \right)}&{C\left( 0 \right) + I\left( 0 \right) + 0\left( I \right)}\\{A\left( I \right) + B\left( Z \right) + I\left( X \right)}&{A\left( 0 \right) + B\left( I \right) + I\left( Y \right)}&{A\left( 0 \right) + B\left( 0 \right) + I\left( I \right)}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&0&0\\0&I&0\\0&0&I\end{array}} \right]\\\left[ {\begin{array}{*{20}{c}}I&0&0\\{C + Z}&I&0\\{A + BZ + X}&{B + Y}&I\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&0&0\\0&I&0\\0&0&I\end{array}} \right]\end{array}\)

Thus, \(\left[ {\begin{array}{*{20}{c}}I&0&0\\{C + Z}&I&0\\{A + BZ + X}&{B + Y}&I\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&0&0\\0&I&0\\0&0&I\end{array}} \right]\).

03

Equate both the sides

Equate both the matrices, as shown below:

\(\left[ {\begin{array}{*{20}{c}}I&0&0\\{C + Z}&I&0\\{A + BZ + X}&{B + Y}&I\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&0&0\\0&I&0\\0&0&I\end{array}} \right]\)

By comparing, the formulas obtained are shown below:

\[\begin{array}{c}C + Z = 0\\Z = - C\end{array}\]

And

\[\begin{array}{c}B + Y = 0\\Y = - B\end{array}\]

And

\(\begin{array}{c}A + BZ + X = 0\\A + B\left( { - C} \right) + X = 0\\A - BC + X = 0\\X = BC - A\end{array}\)

Therefore, the values are \(X = BC - A\), \[Y = - B\], and \[Z = - C\].

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If a matrix \(A\) is \({\bf{5}} \times {\bf{3}}\) and the product \(AB\)is \({\bf{5}} \times {\bf{7}}\), what is the size of \(B\)?

Suppose Tand Ssatisfy the invertibility equations (1) and (2), where T is a linear transformation. Show directly that Sis a linear transformation. [Hint: Given u, v in \({\mathbb{R}^n}\), let \[{\mathop{\rm x}\nolimits} = S\left( {\mathop{\rm u}\nolimits} \right),{\mathop{\rm y}\nolimits} = S\left( {\mathop{\rm v}\nolimits} \right)\]. Then \(T\left( {\mathop{\rm x}\nolimits} \right) = {\mathop{\rm u}\nolimits} \), \[T\left( {\mathop{\rm y}\nolimits} \right) = {\mathop{\rm v}\nolimits} \]. Why? Apply Sto both sides of the equation \(T\left( {\mathop{\rm x}\nolimits} \right) + T\left( {\mathop{\rm y}\nolimits} \right) = T\left( {{\mathop{\rm x}\nolimits} + y} \right)\). Also, consider \(T\left( {cx} \right) = cT\left( x \right)\).]

Suppose the third column of Bis the sum of the first two columns. What can you say about the third column of AB? Why?

In Exercises 1โ€“9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1โ€“4.

2. \[\left[ {\begin{array}{*{20}{c}}E&{\bf{0}}\\{\bf{0}}&F\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&B\\C&D\end{array}} \right]\]

Prove Theorem 2(b) and 2(c). Use the row-column rule. The \(\left( {i,j} \right)\)- entry in \(A\left( {B + C} \right)\) can be written as \({a_{i1}}\left( {{b_{1j}} + {c_{1j}}} \right) + ... + {a_{in}}\left( {{b_{nj}} + {c_{nj}}} \right)\) or \(\sum\limits_{k = 1}^n {{a_{ik}}\left( {{b_{kj}} + {c_{kj}}} \right)} \).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free