Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose Ais \(n \times n\) and the equation \(A{\bf{x}} = {\bf{0}}\) has only the trivial solution. Explain why Ahas npivot columns and Ais row equivalent to \({I_n}\). By Theorem 7, this shows that Amust be invertible. (This exercise and Exercise 24 will be cited in Section 2.3.)

Short Answer

Expert verified

Matrix\(A\)is invertible because it has n pivots, and it is row reduced to the identity matrix form.

Step by step solution

01

Write the algorithm for obtaining \({A^{ - 1}}\)

The inverse of an\(m \times m\)matrix A can be computed using theaugmented matrix \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\), where\(I\)is theidentity matrix. Matrix Ahas an inverse only if \(\left( {\begin{aligned}{*{20}{c}}A&I\end{aligned}} \right)\) is row equivalent to \(\left( {\begin{aligned}{*{20}{c}}I&{{A^{ - 1}}}\end{aligned}} \right)\).

02

Explain the invertible and linear independence of the matrix

It is given that the matrix equation\(A{\bf{x}} = 0\)has only a trivial solution (at least one solution is 0). It means the columns of an\(n \times n\)matrix Aarelinearly independent, and the matrix has n pivot columns or pivots (no free variable). In this condition, the matrix can be row reduced to the identity matrix.

So, matrix A and identity matrix I are row equivalent, and matrix A isinvertible.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let T be a linear transformation that maps \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\). Is \({T^{ - 1}}\) also one-to-one?

Suppose A, B, and Care \(n \times n\) matrices with A, X, and \(A - AX\) invertible, and suppose

\({\left( {A - AX} \right)^{ - 1}} = {X^{ - 1}}B\) …(3)

  1. Explain why B is invertible.
  2. Solve (3) for X. If you need to invert a matrix, explain why that matrix is invertible.

A useful way to test new ideas in matrix algebra, or to make conjectures, is to make calculations with matrices selected at random. Checking a property for a few matrices does not prove that the property holds in general, but it makes the property more believable. Also, if the property is actually false, you may discover this when you make a few calculations.

38. Use at least three pairs of random \(4 \times 4\) matrices Aand Bto test the equalities \({\left( {A + B} \right)^T} = {A^T} + {B^T}\) and \({\left( {AB} \right)^T} = {A^T}{B^T}\). (See Exercise 37.) Report your conclusions. (Note:Most matrix programs use \(A'\) for \({A^{\bf{T}}}\).

Use the inverse found in Exercise 1 to solve the system

\(\begin{aligned}{l}{\bf{8}}{{\bf{x}}_{\bf{1}}} + {\bf{6}}{{\bf{x}}_{\bf{2}}} = {\bf{2}}\\{\bf{5}}{{\bf{x}}_{\bf{1}}} + {\bf{4}}{{\bf{x}}_{\bf{2}}} = - {\bf{1}}\end{aligned}\)

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]

5. \[\left[ {\begin{array}{*{20}{c}}A&B\\C&{\bf{0}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\X&Y\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\bf{0}}&I\\Z&{\bf{0}}\end{array}} \right]\]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free