Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If an \(n \times n\) matrix K cannot be row reduced to \({I_n}\), what can you say about the columns of K? Why?

Short Answer

Expert verified

The columns of K are linearly dependent and do not span \({\mathbb{R}^n}\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Describe the given statement

Given that K cannot be row-reduced to \({I_n}\). Statement (b) of the invertible matrix theorem is false.

02

Use the inverse matrix theorem

The columns of K do not form a linearly independent set nor span \({\mathbb{R}^n}\). Since statement (b) is false, statements (e) and (h) are also false.

03

Draw a conclusion

Hence, the columns of K are linearly dependent and do not span\({\mathbb{R}^n}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let Abe an invertible \(n \times n\) matrix, and let B be an \(n \times p\) matrix. Show that the equation \(AX = B\) has a unique solution \({A^{ - 1}}B\).

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]

8. \[\left[ {\begin{array}{*{20}{c}}A&B\\{\bf{0}}&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}X&Y&Z\\{\bf{0}}&{\bf{0}}&I\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&I\end{array}} \right]\]

Suppose the third column of Bis the sum of the first two columns. What can you say about the third column of AB? Why?

Suppose \({A_{{\bf{11}}}}\) is an invertible matrix. Find matrices Xand Ysuch that the product below has the form indicated. Also,compute \({B_{{\bf{22}}}}\). [Hint:Compute the product on the left, and setit equal to the right side.]

\[\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}&{\bf{0}}\\X&I&{\bf{0}}\\Y&{\bf{0}}&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{A_{{\bf{1}}1}}}&{{A_{{\bf{1}}2}}}\\{{A_{{\bf{2}}1}}}&{{A_{{\bf{2}}2}}}\\{{A_{{\bf{3}}1}}}&{{A_{{\bf{3}}2}}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{{B_{11}}}&{{B_{12}}}\\{\bf{0}}&{{B_{22}}}\\{\bf{0}}&{{B_{32}}}\end{array}} \right]\]

Let Abe an invertible \(n \times n\) matrix, and let \(B\) be an \(n \times p\) matrix. Explain why \({A^{ - 1}}B\) can be computed by row reduction: If\(\left( {\begin{aligned}{*{20}{c}}A&B\end{aligned}} \right) \sim ... \sim \left( {\begin{aligned}{*{20}{c}}I&X\end{aligned}} \right)\), then \(X = {A^{ - 1}}B\).

If Ais larger than \(2 \times 2\), then row reduction of \(\left( {\begin{aligned}{*{20}{c}}A&B\end{aligned}} \right)\) is much faster than computing both \({A^{ - 1}}\) and \({A^{ - 1}}B\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free