Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Some matrix programs, such as MATLAB, have a command to create Hilbert matrices of various sizes. If possible, use an inverse command to compute the inverse of a twelfth-order or larger Hilbert matrix, A. Compute \(A{A^{ - 1}}\). Report what you find.

Short Answer

Expert verified

The output matrix is an identity matrix.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Create a Hilbert matrix of large size

Use the MATLAB command to create theHilbert matrix of size\(12 \times 12\).

\( > > {\rm{A}} = {\rm{hilb}}\left( {12} \right)\)

\(\left[ {\begin{array}{*{20}{c}}{1.000}&{0.500}&{0.333}&{0.250}&{0.200}&{0.167}&{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}\\{0.500}&{0.333}&{0.250}&{0.200}&{0.167}&{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}\\{0.333}&{0.250}&{0.200}&{0.167}&{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}\\{0.250}&{0.200}&{0.167}&{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}\\{0.200}&{0.167}&{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}\\{0.167}&{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}\\{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}&{0.056}\\{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}&{0.056}&{0.053}\\{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}&{0.056}&{0.053}&{0.050}\\{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}&{0.056}&{0.053}&{0.050}&{0.048}\\{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}&{0.056}&{0.053}&{0.050}&{0.048}&{0.045}\\{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}&{0.056}&{0.053}&{0.050}&{0.048}&{0.045}&{0.043}\end{array}} \right]\)

02

Obtain the inverse of matrix A

Compute theinverse of matrix A by using the MATLAB command shown below:

\( > > B = {\rm{A}}\^ - 1\)

\[\left[ {\begin{array}{*{20}{c}}{1.41e + 02}&{ - 9.93e + 05}&{2.29e + 05}&{ - 2.54e + 06}&{1.61e + 07}&{ - 6.35e + 07}&{1.62e + 08}\\{ - 9.93e + 03}&{9.35e + 05}&{ - 2.43e + 07}&{2.89e + 08}&{ - 1.91e + 09}&{7.76e + 09}&{ - 2.03e + 10}\\{2.29e + 05}&{ - 2.43e + 07}&{6.75e + 08}&{ - 8.38e + 09}&{5.72e + 10}&{ - 2.37e + 11}&{6.29e + 11}\\{ - 2.54e + 06}&{2.89e + 08}&{ - 8.38e + 09}&{1.07e + 11}&{ - 7.48e + 11}&{3.15e + 12}&{ - 8.48e + 12}\\{1.61e + 07}&{ - 1.91e + 09}&{5.72e + 10}&{ - 7.48e + 11}&{5.30e + 12}&{ - 2.27e + 13}&{6.16e + 13}\\{ - 6.35e + 07}&{7.76e + 09}&{ - 2.37e + 11}&{3.15e + 12}&{ - 2.27e + 13}&{6.16e + 13}&{ - 2.69e + 14}\\{1.62e + 08}&{ - 2.03e + 10}&{6.29e + 11}&{ - 8.48e + 12}&{6.16e + 13}&{ - 2.69e + 14}&{7.44e + 14}\\{ - 2.73e + 08}&{3.47e + 10}&{ - 1.09e + 12}&{1.49e + 13}&{ - 1.09e + 14}&{4.80e + 14}&{ - 1.34e + 15}\\{3.02e + 08}&{ - 3.89e + 10}&{1.24e + 12}&{ - 1.70e + 13}&{1.26e + 14}&{ - 5.57e + 14}&{1.56e + 15}\\{ - 2.10e + 08}&{2.74e + 10}&{ - 8.81e + 11}&{1.22e + 13}&{ - 9.08e + 13}&{4.04e + 14}&{ - 1.14e + 15}\\{8.83e + 07}&{ - 1.10e + 10}&{3.57e + 11}&{ - 4.98e + 12}&{3.72e + 13}&{ - 1.66e + 14}&{4.70e + 14}\\{ - 1.45e + 07}&{1.93e + 09}&{ - 6.29e + 10}&{8.82e + 11}&{ - 6.63e + 12}&{2.98e + 13}&{ - 8.44e + 13}\end{array}} \right.\]

\(\left. {\begin{array}{*{20}{c}}{ - 2.73e + 08}&{3.02e + 08}&{ - 2.10e + 08}&{8.38e + 07}&{ - 1.45e + 07}\\{3.47e + 10}&{ - 3.89e + 10}&{ - 2.74e + 10}&{ - 1.10e + 10}&{1.93e + 09}\\{ - 1.09e + 12}&{1.24e + 12}&{ - 8.81e + 11}&{3.57e + 11}&{ - 6.29e + 10}\\{1.49e + 13}&{ - 1.70e + 13}&{1.22e + 13}&{ - 4.89e + 12}&{8.82e + 11}\\{ - 1.09e + 14}&{1.26e + 14}&{ - 9.08e + 13}&{3.72e + 13}&{ - 6.63e + 12}\\{4.80e + 14}&{ - 5.57e + 14}&{4.04e + 14}&{ - 1.66e + 14}&{2.98e + 13}\\{ - 1.34e + 15}&{1.56e + 15}&{ - 1.14e + 15}&{4.70e + 14}&{ - 8.44e + 13}\\{2.42e + 15}&{ - 2.84e + 15}&{2.80e + 15}&{ - 8.62e + 14}&{1.55e + 14}\\{ - 2.84e + 15}&{3.34e + 15}&{ - 2.45e + 15}&{1.02e + 15}&{ - 1.85e + 14}\\{2.08e + 15}&{ - 2.45e + 15}&{1.81e + 15}&{ - 7.56e + 14}&{1.37e + 14}\\{ - 8.62e + 14}&{1.02e + 15}&{ - 7.56e + 14}&{3.17e + 14}&{ - 5.75e + 13}\\{1.55e + 14}&{ - 1.85e + 14}&{1.37e + 14}&{ - 5.75e + 13}&{1.05e + 13}\end{array}} \right]\)

03

Obtain the product of the matrix and its inverse

Compute matrix C by using the MATLAB command shown below:

\( > > C = {\rm{A}}*{\rm{B}}\)

\(\left[ {\begin{array}{*{20}{c}}{1.000}&{0.000}&{0.000}&{ - 0.001}&{0.001}&{0.006}&{ - 0.010}&{ - 0.019}&{ - 0.054}&{0.000}&{0.007}&{ - 0.001}\\{ - 0.005}&{1.000}&{0.000}&{0.000}&{0.002}&{0.000}&{0.020}&{ - 0.052}&{0.025}&{ - 0.019}&{0.003}&{ - 0.004}\\{ - 0.006}&{0.003}&{1.000}&{0.000}&{0.002}&{ - 0.002}&{0.023}&{ - 0.042}&{0.041}&{ - 0.036}&{0.007}&{ - 0.003}\\{ - 0.007}&{0.004}&{ - 0.001}&{1.000}&{0.002}&{ - 0.003}&{0.015}&{ - 0.035}&{0.049}&{ - 0.047}&{0.003}&{ - 0.003}\\{ - 0.007}&{0.006}&{ - 0.001}&{0.000}&{1.003}&{0.000}&{0.001}&{ - 0.029}&{0.027}&{ - 0.021}&{0.006}&{ - 0.002}\\{ - 0.007}&{0.006}&{ - 0.001}&{ - 0.001}&{0.002}&{0.997}&{0.020}&{ - 0.036}&{0.047}&{ - 0.036}&{0.010}&{ - 0.003}\\{ - 0.007}&{0.006}&{ - 0.001}&{ - 0.002}&{0.002}&{ - 0.004}&{1.012}&{ - 0.040}&{0.047}&{ - 0.034}&{0.010}&{ - 0.002}\\{ - 0.006}&{0.007}&{0.000}&{ - 0.003}&{0.002}&{ - 0.006}&{0.016}&{0.948}&{0.050}&{ - 0.040}&{0.015}&{ - 0.003}\\{ - 0.006}&{0.007}&{0.000}&{ - 0.003}&{0.001}&{0.005}&{ - 0.011}&{0.012}&{1.012}&{ - 0.001}&{ - 0.001}&{ - 0.001}\\{ - 0.006}&{0.006}&{0.000}&{ - 0.004}&{0.003}&{ - 0.002}&{0.005}&{ - 0.031}&{0.049}&{0.975}&{0.13}&{ - 0.002}\\{ - 0.006}&{0.006}&{0.001}&{ - 0.004}&{0.000}&{0.009}&{ - 0.022}&{0.009}&{ - 0.033}&{0.025}&{0.989}&{0.002}\\{ - 0.006}&{0.006}&{0.001}&{ - 0.005}&{0.002}&{0.001}&{0.006}&{ - 0.018}&{0.025}&{ - 0.018}&{0.002}&{0.999}\end{array}} \right]\)

Thus, the resultant matrix is an identity matrix.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use matrix algebra to show that if A is invertible and D satisfies \(AD = I\) then \(D = {A^{ - {\bf{1}}}}\).

In exercises 11 and 12, mark each statement True or False. Justify each answer.

a. The definition of the matrix-vector product \(A{\bf{x}}\) is a special case of block multiplication.

b. If \({A_{\bf{1}}}\), \({A_{\bf{2}}}\), \({B_{\bf{1}}}\), and \({B_{\bf{2}}}\) are \(n \times n\) matrices, \[A = \left[ {\begin{array}{*{20}{c}}{{A_{\bf{1}}}}\\{{A_{\bf{2}}}}\end{array}} \right]\] and \(B = \left[ {\begin{array}{*{20}{c}}{{B_{\bf{1}}}}&{{B_{\bf{2}}}}\end{array}} \right]\), then the product \(BA\) is defined, but \(AB\) is not.

Explain why the columns of an \(n \times n\) matrix Aare linearly independent when Ais invertible.

Let Ube the \({\bf{3}} \times {\bf{2}}\) cost matrix described in Example 6 of Section 1.8. The first column of Ulists the costs per dollar of output for manufacturing product B, and the second column lists the costs per dollar of output for product C. (The costs are categorized as materials, labor, and overhead.) Let \({q_1}\) be a vector in \({\mathbb{R}^{\bf{2}}}\) that lists the output (measured in dollars) of products B and C manufactured during the first quarter of the year, and let \({q_{\bf{2}}}\), \({q_{\bf{3}}}\) and \({q_{\bf{4}}}\) be the analogous vectors that list the amounts of products B and C manufactured in the second, third, and fourth quarters, respectively. Give an economic description of the data in the matrix UQ, where \(Q = \left( {\begin{aligned}{*{20}{c}}{{{\bf{q}}_1}}&{{{\bf{q}}_2}}&{{{\bf{q}}_3}}&{{{\bf{q}}_4}}\end{aligned}} \right)\).

If a matrix \(A\) is \({\bf{5}} \times {\bf{3}}\) and the product \(AB\)is \({\bf{5}} \times {\bf{7}}\), what is the size of \(B\)?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free