Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Some matrix programs, such as MATLAB, have a command to create Hilbert matrices of various sizes. If possible, use an inverse command to compute the inverse of a twelfth-order or larger Hilbert matrix, A. Compute \(A{A^{ - 1}}\). Report what you find.

Short Answer

Expert verified

The output matrix is an identity matrix.

Step by step solution

01

Create a Hilbert matrix of large size

Use the MATLAB command to create theHilbert matrix of size\(12 \times 12\).

\( > > {\rm{A}} = {\rm{hilb}}\left( {12} \right)\)

\(\left[ {\begin{array}{*{20}{c}}{1.000}&{0.500}&{0.333}&{0.250}&{0.200}&{0.167}&{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}\\{0.500}&{0.333}&{0.250}&{0.200}&{0.167}&{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}\\{0.333}&{0.250}&{0.200}&{0.167}&{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}\\{0.250}&{0.200}&{0.167}&{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}\\{0.200}&{0.167}&{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}\\{0.167}&{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}\\{0.143}&{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}&{0.056}\\{0.125}&{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}&{0.056}&{0.053}\\{0.111}&{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}&{0.056}&{0.053}&{0.050}\\{0.100}&{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}&{0.056}&{0.053}&{0.050}&{0.048}\\{0.091}&{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}&{0.056}&{0.053}&{0.050}&{0.048}&{0.045}\\{0.083}&{0.077}&{0.071}&{0.067}&{0.063}&{0.059}&{0.056}&{0.053}&{0.050}&{0.048}&{0.045}&{0.043}\end{array}} \right]\)

02

Obtain the inverse of matrix A

Compute theinverse of matrix A by using the MATLAB command shown below:

\( > > B = {\rm{A}}\^ - 1\)

\[\left[ {\begin{array}{*{20}{c}}{1.41e + 02}&{ - 9.93e + 05}&{2.29e + 05}&{ - 2.54e + 06}&{1.61e + 07}&{ - 6.35e + 07}&{1.62e + 08}\\{ - 9.93e + 03}&{9.35e + 05}&{ - 2.43e + 07}&{2.89e + 08}&{ - 1.91e + 09}&{7.76e + 09}&{ - 2.03e + 10}\\{2.29e + 05}&{ - 2.43e + 07}&{6.75e + 08}&{ - 8.38e + 09}&{5.72e + 10}&{ - 2.37e + 11}&{6.29e + 11}\\{ - 2.54e + 06}&{2.89e + 08}&{ - 8.38e + 09}&{1.07e + 11}&{ - 7.48e + 11}&{3.15e + 12}&{ - 8.48e + 12}\\{1.61e + 07}&{ - 1.91e + 09}&{5.72e + 10}&{ - 7.48e + 11}&{5.30e + 12}&{ - 2.27e + 13}&{6.16e + 13}\\{ - 6.35e + 07}&{7.76e + 09}&{ - 2.37e + 11}&{3.15e + 12}&{ - 2.27e + 13}&{6.16e + 13}&{ - 2.69e + 14}\\{1.62e + 08}&{ - 2.03e + 10}&{6.29e + 11}&{ - 8.48e + 12}&{6.16e + 13}&{ - 2.69e + 14}&{7.44e + 14}\\{ - 2.73e + 08}&{3.47e + 10}&{ - 1.09e + 12}&{1.49e + 13}&{ - 1.09e + 14}&{4.80e + 14}&{ - 1.34e + 15}\\{3.02e + 08}&{ - 3.89e + 10}&{1.24e + 12}&{ - 1.70e + 13}&{1.26e + 14}&{ - 5.57e + 14}&{1.56e + 15}\\{ - 2.10e + 08}&{2.74e + 10}&{ - 8.81e + 11}&{1.22e + 13}&{ - 9.08e + 13}&{4.04e + 14}&{ - 1.14e + 15}\\{8.83e + 07}&{ - 1.10e + 10}&{3.57e + 11}&{ - 4.98e + 12}&{3.72e + 13}&{ - 1.66e + 14}&{4.70e + 14}\\{ - 1.45e + 07}&{1.93e + 09}&{ - 6.29e + 10}&{8.82e + 11}&{ - 6.63e + 12}&{2.98e + 13}&{ - 8.44e + 13}\end{array}} \right.\]

\(\left. {\begin{array}{*{20}{c}}{ - 2.73e + 08}&{3.02e + 08}&{ - 2.10e + 08}&{8.38e + 07}&{ - 1.45e + 07}\\{3.47e + 10}&{ - 3.89e + 10}&{ - 2.74e + 10}&{ - 1.10e + 10}&{1.93e + 09}\\{ - 1.09e + 12}&{1.24e + 12}&{ - 8.81e + 11}&{3.57e + 11}&{ - 6.29e + 10}\\{1.49e + 13}&{ - 1.70e + 13}&{1.22e + 13}&{ - 4.89e + 12}&{8.82e + 11}\\{ - 1.09e + 14}&{1.26e + 14}&{ - 9.08e + 13}&{3.72e + 13}&{ - 6.63e + 12}\\{4.80e + 14}&{ - 5.57e + 14}&{4.04e + 14}&{ - 1.66e + 14}&{2.98e + 13}\\{ - 1.34e + 15}&{1.56e + 15}&{ - 1.14e + 15}&{4.70e + 14}&{ - 8.44e + 13}\\{2.42e + 15}&{ - 2.84e + 15}&{2.80e + 15}&{ - 8.62e + 14}&{1.55e + 14}\\{ - 2.84e + 15}&{3.34e + 15}&{ - 2.45e + 15}&{1.02e + 15}&{ - 1.85e + 14}\\{2.08e + 15}&{ - 2.45e + 15}&{1.81e + 15}&{ - 7.56e + 14}&{1.37e + 14}\\{ - 8.62e + 14}&{1.02e + 15}&{ - 7.56e + 14}&{3.17e + 14}&{ - 5.75e + 13}\\{1.55e + 14}&{ - 1.85e + 14}&{1.37e + 14}&{ - 5.75e + 13}&{1.05e + 13}\end{array}} \right]\)

03

Obtain the product of the matrix and its inverse

Compute matrix C by using the MATLAB command shown below:

\( > > C = {\rm{A}}*{\rm{B}}\)

\(\left[ {\begin{array}{*{20}{c}}{1.000}&{0.000}&{0.000}&{ - 0.001}&{0.001}&{0.006}&{ - 0.010}&{ - 0.019}&{ - 0.054}&{0.000}&{0.007}&{ - 0.001}\\{ - 0.005}&{1.000}&{0.000}&{0.000}&{0.002}&{0.000}&{0.020}&{ - 0.052}&{0.025}&{ - 0.019}&{0.003}&{ - 0.004}\\{ - 0.006}&{0.003}&{1.000}&{0.000}&{0.002}&{ - 0.002}&{0.023}&{ - 0.042}&{0.041}&{ - 0.036}&{0.007}&{ - 0.003}\\{ - 0.007}&{0.004}&{ - 0.001}&{1.000}&{0.002}&{ - 0.003}&{0.015}&{ - 0.035}&{0.049}&{ - 0.047}&{0.003}&{ - 0.003}\\{ - 0.007}&{0.006}&{ - 0.001}&{0.000}&{1.003}&{0.000}&{0.001}&{ - 0.029}&{0.027}&{ - 0.021}&{0.006}&{ - 0.002}\\{ - 0.007}&{0.006}&{ - 0.001}&{ - 0.001}&{0.002}&{0.997}&{0.020}&{ - 0.036}&{0.047}&{ - 0.036}&{0.010}&{ - 0.003}\\{ - 0.007}&{0.006}&{ - 0.001}&{ - 0.002}&{0.002}&{ - 0.004}&{1.012}&{ - 0.040}&{0.047}&{ - 0.034}&{0.010}&{ - 0.002}\\{ - 0.006}&{0.007}&{0.000}&{ - 0.003}&{0.002}&{ - 0.006}&{0.016}&{0.948}&{0.050}&{ - 0.040}&{0.015}&{ - 0.003}\\{ - 0.006}&{0.007}&{0.000}&{ - 0.003}&{0.001}&{0.005}&{ - 0.011}&{0.012}&{1.012}&{ - 0.001}&{ - 0.001}&{ - 0.001}\\{ - 0.006}&{0.006}&{0.000}&{ - 0.004}&{0.003}&{ - 0.002}&{0.005}&{ - 0.031}&{0.049}&{0.975}&{0.13}&{ - 0.002}\\{ - 0.006}&{0.006}&{0.001}&{ - 0.004}&{0.000}&{0.009}&{ - 0.022}&{0.009}&{ - 0.033}&{0.025}&{0.989}&{0.002}\\{ - 0.006}&{0.006}&{0.001}&{ - 0.005}&{0.002}&{0.001}&{0.006}&{ - 0.018}&{0.025}&{ - 0.018}&{0.002}&{0.999}\end{array}} \right]\)

Thus, the resultant matrix is an identity matrix.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let Abe an invertible \(n \times n\) matrix, and let \(B\) be an \(n \times p\) matrix. Explain why \({A^{ - 1}}B\) can be computed by row reduction: If\(\left( {\begin{aligned}{*{20}{c}}A&B\end{aligned}} \right) \sim ... \sim \left( {\begin{aligned}{*{20}{c}}I&X\end{aligned}} \right)\), then \(X = {A^{ - 1}}B\).

If Ais larger than \(2 \times 2\), then row reduction of \(\left( {\begin{aligned}{*{20}{c}}A&B\end{aligned}} \right)\) is much faster than computing both \({A^{ - 1}}\) and \({A^{ - 1}}B\).

Suppose A, B,and Care invertible \(n \times n\) matrices. Show that ABCis also invertible by producing a matrix Dsuch that \(\left( {ABC} \right)D = I\) and \(D\left( {ABC} \right) = I\).

Let \(X\) be \(m \times n\) data matrix such that \({X^T}X\) is invertible., and let \(M = {I_m} - X{\left( {{X^T}X} \right)^{ - {\bf{1}}}}{X^T}\). Add a column \({x_{\bf{0}}}\) to the data and form

\(W = \left[ {\begin{array}{*{20}{c}}X&{{x_{\bf{0}}}}\end{array}} \right]\)

Compute \({W^T}W\). The \(\left( {{\bf{1}},{\bf{1}}} \right)\) entry is \({X^T}X\). Show that the Schur complement (Exercise 15) of \({X^T}X\) can be written in the form \({\bf{x}}_{\bf{0}}^TM{{\bf{x}}_{\bf{0}}}\). It can be shown that the quantity \({\left( {{\bf{x}}_{\bf{0}}^TM{{\bf{x}}_{\bf{0}}}} \right)^{ - {\bf{1}}}}\) is the \(\left( {{\bf{2}},{\bf{2}}} \right)\)-entry in \({\left( {{W^T}W} \right)^{ - {\bf{1}}}}\). This entry has a useful statistical interpretation, under appropriate hypotheses.

In the study of engineering control of physical systems, a standard set of differential equations is transformed by Laplace transforms into the following system of linear equations:

\(\left[ {\begin{array}{*{20}{c}}{A - s{I_n}}&B\\C&{{I_m}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\bf{x}}\\{\bf{u}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{y}}\end{array}} \right]\)

Where \(A\) is \(n \times n\), \(B\) is \(n \times m\), \(C\) is \(m \times n\), and \(s\) is a variable. The vector \({\bf{u}}\) in \({\mathbb{R}^m}\) is the โ€œinputโ€ to the system, \({\bf{y}}\) in \({\mathbb{R}^m}\) is the โ€œoutputโ€ and \({\bf{x}}\) in \({\mathbb{R}^n}\) is the โ€œstateโ€ vector. (Actually, the vectors \({\bf{x}}\), \({\bf{u}}\) and \({\bf{v}}\) are functions of \(s\), but we suppress this fact because it does not affect the algebraic calculations in Exercises 19 and 20.)

In Exercises 1 and 2, compute each matrix sum or product if it is defined. If an expression is undefined, explain why. Let

\(A = \left( {\begin{aligned}{*{20}{c}}2&0&{ - 1}\\4&{ - 5}&2\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}7&{ - 5}&1\\1&{ - 4}&{ - 3}\end{aligned}} \right)\), \(C = \left( {\begin{aligned}{*{20}{c}}1&2\\{ - 2}&1\end{aligned}} \right)\), \(D = \left( {\begin{aligned}{*{20}{c}}3&5\\{ - 1}&4\end{aligned}} \right)\) and \(E = \left( {\begin{aligned}{*{20}{c}}{ - 5}\\3\end{aligned}} \right)\)

\( - 2A\), \(B - 2A\), \(AC\), \(CD\).

Prove Theorem 2(b) and 2(c). Use the row-column rule. The \(\left( {i,j} \right)\)- entry in \(A\left( {B + C} \right)\) can be written as \({a_{i1}}\left( {{b_{1j}} + {c_{1j}}} \right) + ... + {a_{in}}\left( {{b_{nj}} + {c_{nj}}} \right)\) or \(\sum\limits_{k = 1}^n {{a_{ik}}\left( {{b_{kj}} + {c_{kj}}} \right)} \).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free