Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose a linear transformation \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) has the property that \(T\left( {\mathop{\rm u}\nolimits} \right) = T\left( {\mathop{\rm v}\nolimits} \right)\) for some pair of distinct vectors u and v in \({\mathbb{R}^n}\). Can Tmap \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\)? Why or why not?

Short Answer

Expert verified

The linear transformation T cannot map \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\).

Step by step solution

01

State the standard matrix of T

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^m}\) be a linear transformation, and Abe the standard matrix for T. Then, according to theorem 12,

  1. Tmaps \({\mathbb{R}^n}\) onto \({\mathbb{R}^m}\) if and only if the columns of Aspan \({\mathbb{R}^m}\);
  2. T is one-to-one if and only if the columns of Aare linearly independent.

Consider Ais the standard matrix of T.

T is not one-to-one mapping according to the hypothesis. Therefore, according to theorem 12, the standard matrix A of Thas linearly dependent columns.

02

Determine whether T   maps \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\)

The columns of A do not span \({\mathbb{R}^n}\) because Ais a square matrix. Therefore, the linear transformation T cannot map \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose the first two columns, \({{\bf{b}}_1}\) and \({{\bf{b}}_2}\), of Bare equal. What can you say about the columns of AB(if ABis defined)? Why?

3. Find the inverse of the matrix \(\left( {\begin{aligned}{*{20}{c}}{\bf{8}}&{\bf{5}}\\{ - {\bf{7}}}&{ - {\bf{5}}}\end{aligned}} \right)\).

Use the inverse found in Exercise 1 to solve the system

\(\begin{aligned}{l}{\bf{8}}{{\bf{x}}_{\bf{1}}} + {\bf{6}}{{\bf{x}}_{\bf{2}}} = {\bf{2}}\\{\bf{5}}{{\bf{x}}_{\bf{1}}} + {\bf{4}}{{\bf{x}}_{\bf{2}}} = - {\bf{1}}\end{aligned}\)

Exercises 15 and 16 concern arbitrary matrices A, B, and Cfor which the indicated sums and products are defined. Mark each statement True or False. Justify each answer.

15. a. If A and B are \({\bf{2}} \times {\bf{2}}\) with columns \({{\bf{a}}_1},{{\bf{a}}_2}\) and \({{\bf{b}}_1},{{\bf{b}}_2}\) respectively, then \(AB = \left( {\begin{aligned}{*{20}{c}}{{{\bf{a}}_1}{{\bf{b}}_1}}&{{{\bf{a}}_2}{{\bf{b}}_2}}\end{aligned}} \right)\).

b. Each column of ABis a linear combination of the columns of Busing weights from the corresponding column of A.

c. \(AB + AC = A\left( {B + C} \right)\)

d. \({A^T} + {B^T} = {\left( {A + B} \right)^T}\)

e. The transpose of a product of matrices equals the product of their transposes in the same order.

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]

6. \[\left[ {\begin{array}{*{20}{c}}X&{\bf{0}}\\Y&Z\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&{\bf{0}}\\B&C\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\{\bf{0}}&I\end{array}} \right]\]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free