Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

33. \(T\left( {{x_1},{x_2}} \right) = \left( { - 5{x_1} + 9{x_2},4{x_1} - 7{x_2}} \right)\)

Short Answer

Expert verified

The formula for \({T^{ - 1}}\) is \[{T^{ - 1}}\left( {{x_1},{x_2}} \right) = \left( {7{x_1} + 9{x_2},4{x_1} + 5{x_2}} \right)\].

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Determine the standard matrix T

Write the transformation \(T\left( x \right)\) and \(x\) in the column vector of \(A\).

\[\begin{array}{c}T\left( x \right) = \left[ {\begin{array}{*{20}{c}}{ - 5{x_1} + 9{x_2}}\\{4{x_1} - 7{x_3}}\end{array}} \right]\\ = \left[ A \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{ - 5}&9\\4&{ - 7}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right]\end{array}\]

Thus, the standard matrix of T is \(A = \left[ {\begin{array}{*{20}{c}}{ - 5}&9\\4&{ - 7}\end{array}} \right]\).

02

Show that T  is invertible

Theorem 4 states that \(A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\). If \(ad - bc \ne 0\), then A is invertible.

\({A^{ - 1}} = \frac{1}{{ad - bc}}\left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\)

If \(ad - bc = 0\), then Aisnot invertible.

The linear transformation T is invertible since the determinant of the matrix is non-zero.

03

Determine the formula for \({T^{ - 1}}\)

Let\(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be a linear transformation and Abe the standard matrix for T. Then, according toTheorem 9,Tis invertible if and only if Ais an invertible matrix. The linear transformation S,given by \[S\left( x \right) = {A^{ - 1}}{\mathop{\rm x}\nolimits} \], is a unique function satisfying the equations

  1. \(S\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \)for all x in \({\mathbb{R}^n}\), and
  2. \(T\left( {S\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \)for all x in \({\mathbb{R}^n}\).

According to theorem 9, transformation Tis invertible and the standard matrix of \({T^{ - 1}}\) is \({A^{ - 1}}\).

Use the formula for \(2 \times 2\) inverse.

\(\begin{array}{c}{A^{ - 1}} = \frac{1}{{35 - 36}}\left[ {\begin{array}{*{20}{c}}{ - 7}&{ - 9}\\{ - 4}&{ - 5}\end{array}} \right]\\ = \frac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}{ - 7}&{ - 9}\\{ - 4}&{ - 5}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}7&9\\4&5\end{array}} \right]\end{array}\)

Therefore,

\[\begin{array}{c}{T^{ - 1}}\left( {{x_1},{x_2}} \right) = {A^{ - 1}}x\\ = \left[ {\begin{array}{*{20}{c}}7&9\\4&5\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right]\\ = \left( {7{x_1} + 9{x_2},4{x_1} + 5{x_2}} \right)\end{array}\]

Thus, the formula for \({T^{ - 1}}\) is \[{T^{ - 1}}\left( {{x_1},{x_2}} \right) = \left( {7{x_1} + 9{x_2},4{x_1} + 5{x_2}} \right)\].

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose Tand U are linear transformations from \({\mathbb{R}^n}\) to \({\mathbb{R}^n}\) such that \(T\left( {U{\mathop{\rm x}\nolimits} } \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\) . Is it true that \(U\left( {T{\mathop{\rm x}\nolimits} } \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\)? Why or why not?

[M] For block operations, it may be necessary to access or enter submatrices of a large matrix. Describe the functions or commands of your matrix program that accomplish the following tasks. Suppose A is a \(20 \times 30\) matrix.

  1. Display the submatrix of Afrom rows 15 to 20 and columns 5 to 10.
  2. Insert a \(5 \times 10\) matrix B into A, beginning at row 10 and column 20.
  3. Create a \(50 \times 50\) matrix of the form \(B = \left[ {\begin{array}{*{20}{c}}A&0\\0&{{A^T}}\end{array}} \right]\).

[Note: It may not be necessary to specify the zero blocks in B.]

If \(A = \left( {\begin{aligned}{*{20}{c}}1&{ - 2}\\{ - 2}&5\end{aligned}} \right)\) and \(AB = \left( {\begin{aligned}{*{20}{c}}{ - 1}&2&{ - 1}\\6&{ - 9}&3\end{aligned}} \right)\), determine the first and second column of B.

Prove Theorem 2(d). (Hint: The \(\left( {i,j} \right)\)- entry in \(\left( {rA} \right)B\) is \(\left( {r{a_{i1}}} \right){b_{1j}} + ... + \left( {r{a_{in}}} \right){b_{nj}}\).)

A useful way to test new ideas in matrix algebra, or to make conjectures, is to make calculations with matrices selected at random. Checking a property for a few matrices does not prove that the property holds in general, but it makes the property more believable. Also, if the property is actually false, you may discover this when you make a few calculations.

37. Construct a random \({\bf{4}} \times {\bf{4}}\) matrix Aand test whether \(\left( {A + I} \right)\left( {A - I} \right) = {A^2} - I\). The best way to do this is to compute \(\left( {A + I} \right)\left( {A - I} \right) - \left( {{A^2} - I} \right)\) and verify that this difference is the zero matrix. Do this for three random matrices. Then test \(\left( {A + B} \right)\left( {A - B} \right) = {A^2} - {B^{\bf{2}}}\) the same way for three pairs of random \({\bf{4}} \times {\bf{4}}\) matrices. Report your conclusions.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free