Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose Ais an \(n \times n\) matrix with the property that the equation \(Ax = 0\)has only the trivial solution. Without using the Invertible Matrix Theorem, explain directly why the equation \(Ax = b\) must have a solution for each b in \({\mathbb{R}^n}\).

Short Answer

Expert verified

The equation \(Ax = b\) has a solution for each b in \({\mathbb{R}^n}\).

Step by step solution

01

Show that the equation \[Ax = {\mathop{\rm b}\nolimits} \] has only a trivial solution

If \(Ax = 0\) has only a trivial solution, A must have a pivot in each of its \(n\) columns.

02

Explain that the equation Ax = b has exactly one solution

Theorem 4states that if \(A\) is an \({\rm{m}} \times n\) matrix, then the following statements are equivalent.

  1. For each \({\mathop{\rm b}\nolimits} \) in \({\mathbb{R}^m}\), the equation \(Ax = b\) has a solution.
  2. Each \({\mathop{\rm b}\nolimits} \) in \({\mathbb{R}^m}\) is a linear combination of the columns of A.
  3. The columns of \(A\) span .
  4. \(A\)has a pivot position in every row.

Since Ais a square matrix, itmust have a pivot in each row. According to theorem 4, the equation \(Ax = b\) has a solution for each b in \({\mathbb{R}^n}\).

Thus, the equation \(Ax = b\) has a solution for each b in \({\mathbb{R}^n}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose the first two columns, \({{\bf{b}}_1}\) and \({{\bf{b}}_2}\), of Bare equal. What can you say about the columns of AB(if ABis defined)? Why?

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]

6. \[\left[ {\begin{array}{*{20}{c}}X&{\bf{0}}\\Y&Z\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&{\bf{0}}\\B&C\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\{\bf{0}}&I\end{array}} \right]\]

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]

7. \[\left[ {\begin{array}{*{20}{c}}X&{\bf{0}}&{\bf{0}}\\Y&{\bf{0}}&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&Z\\{\bf{0}}&{\bf{0}}\\B&I\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\{\bf{0}}&I\end{array}} \right]\]

In Exercise 10 mark each statement True or False. Justify each answer.

10. a. A product of invertible \(n \times n\) matrices is invertible, and the inverse of the product of their inverses in the same order.

b. If A is invertible, then the inverse of \({A^{ - {\bf{1}}}}\) is A itself.

c. If \(A = \left( {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right)\) and \(ad = bc\), then A is not invertible.

d. If A can be row reduced to the identity matrix, then A must be invertible.

e. If A is invertible, then elementary row operations that reduce A to the identity \({I_n}\) also reduce \({A^{ - {\bf{1}}}}\) to \({I_n}\).

Solve the equation \(AB = BC\) for A, assuming that A, B, and C are square and Bis invertible.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free