Chapter 2: Q2.3-30Q (page 93)
If Ais an \(n \times n\) matrix and the transformation \({\bf{x}}| \to A{\bf{x}}\) is one-to-one, what else can you say about this transformation? Justify your answer.
Short Answer
The transformation is invertible.
Chapter 2: Q2.3-30Q (page 93)
If Ais an \(n \times n\) matrix and the transformation \({\bf{x}}| \to A{\bf{x}}\) is one-to-one, what else can you say about this transformation? Justify your answer.
The transformation is invertible.
All the tools & learning materials you need for study success - in one app.
Get started for freeSuppose \(CA = {I_n}\)(the \(n \times n\) identity matrix). Show that the equation \(Ax = 0\) has only the trivial solution. Explain why Acannot have more columns than rows.
In exercises 11 and 12, mark each statement True or False. Justify each answer.
a. The definition of the matrix-vector product \(A{\bf{x}}\) is a special case of block multiplication.
b. If \({A_{\bf{1}}}\), \({A_{\bf{2}}}\), \({B_{\bf{1}}}\), and \({B_{\bf{2}}}\) are \(n \times n\) matrices, \[A = \left[ {\begin{array}{*{20}{c}}{{A_{\bf{1}}}}\\{{A_{\bf{2}}}}\end{array}} \right]\] and \(B = \left[ {\begin{array}{*{20}{c}}{{B_{\bf{1}}}}&{{B_{\bf{2}}}}\end{array}} \right]\), then the product \(BA\) is defined, but \(AB\) is not.
Prove the Theorem 3(d) i.e., \({\left( {AB} \right)^T} = {B^T}{A^T}\).
Give a formula for \({\left( {ABx} \right)^T}\), where \({\bf{x}}\) is a vector and \(A\) and \(B\) are matrices of appropriate sizes.
In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1–4.
1. \(\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\E&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&B\\C&D\end{array}} \right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.