Chapter 2: Q2.3-30Q (page 93)
If Ais an \(n \times n\) matrix and the transformation \({\bf{x}}| \to A{\bf{x}}\) is one-to-one, what else can you say about this transformation? Justify your answer.
Short Answer
The transformation is invertible.
Chapter 2: Q2.3-30Q (page 93)
If Ais an \(n \times n\) matrix and the transformation \({\bf{x}}| \to A{\bf{x}}\) is one-to-one, what else can you say about this transformation? Justify your answer.
The transformation is invertible.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn exercise 5 and 6, compute the product \(AB\) in two ways: (a) by the definition, where \(A{b_{\bf{1}}}\) and \(A{b_{\bf{2}}}\) are computed separately, and (b) by the row-column rule for computing \(AB\).
\(A = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{1}}}&{\bf{2}}\\{\bf{5}}&{\bf{4}}\\{\bf{2}}&{ - {\bf{3}}}\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}&{ - {\bf{2}}}\\{ - {\bf{2}}}&{\bf{1}}\end{aligned}} \right)\)
A useful way to test new ideas in matrix algebra, or to make conjectures, is to make calculations with matrices selected at random. Checking a property for a few matrices does not prove that the property holds in general, but it makes the property more believable. Also, if the property is actually false, you may discover this when you make a few calculations.
36. Write the command(s) that will create a \(6 \times 4\) matrix with random entries. In what range of numbers do the entries lie? Tell how to create a \(3 \times 3\) matrix with random integer entries between \( - {\bf{9}}\) and 9. (Hint:If xis a random number such that 0 < x < 1, then \( - 9.5 < 19\left( {x - .5} \right) < 9.5\).
Explain why the columns of an \(n \times n\) matrix Aspan \({\mathbb{R}^{\bf{n}}}\) when
Ais invertible. (Hint:Review Theorem 4 in Section 1.4.)
In Exercises 1 and 2, compute each matrix sum or product if it is defined. If an expression is undefined, explain why. Let
\(A = \left( {\begin{aligned}{*{20}{c}}2&0&{ - 1}\\4&{ - 5}&2\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}7&{ - 5}&1\\1&{ - 4}&{ - 3}\end{aligned}} \right)\), \(C = \left( {\begin{aligned}{*{20}{c}}1&2\\{ - 2}&1\end{aligned}} \right)\), \(D = \left( {\begin{aligned}{*{20}{c}}3&5\\{ - 1}&4\end{aligned}} \right)\) and \(E = \left( {\begin{aligned}{*{20}{c}}{ - 5}\\3\end{aligned}} \right)\)
\(A + 2B\), \(3C - E\), \(CB\), \(EB\).
Suppose AB = AC, where Band Care \(n \times p\) matrices and A is invertible. Show that B = C. Is this true, in general, when A is not invertible.
What do you think about this solution?
We value your feedback to improve our textbook solutions.