Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose the second column of Bis all zeros. What can you

say about the second column of AB?

Short Answer

Expert verified

If thethird column of Bis the sum of the first two columns,the third column of AB is the sum of the first two columns of AB.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition of matrix multiplication

Consider two matrices P and Q of order\(m \times n\)and\(n \times p\), respectively. The order of the product PQ matrix is\(m \times p\).

Let\({{\bf{q}}_1},{{\bf{q}}_2},...,{{\bf{q}}_n}\)be the columns of the matrix Q. Then, the product PQ is obtained as shown below:

\(\begin{aligned}{c}PQ = P\left( {\begin{aligned}{*{20}{c}}{{{\bf{q}}_1}}&{{{\bf{q}}_2}}& \cdots &{{{\bf{q}}_n}}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{P{{\bf{q}}_1}}&{P{{\bf{q}}_2}}& \cdots &{P{{\bf{q}}_n}}\end{aligned}} \right)\end{aligned}\)

02

The matrix product AB

It is given thatthe second column of Bis all zeros. So,\({{\bf{b}}_2} = {\bf{0}}\), and the matrix Bcan be represented as follows:

\(B = \left( {\begin{aligned}{*{20}{c}}{{{\bf{b}}_1}}&{\bf{0}}&{{{\bf{b}}_3}}& \cdots &{{{\bf{b}}_p}}\end{aligned}} \right)\)

Obtain the product AB as shown below:

\(\begin{aligned}{c}AB = A\left( {\begin{aligned}{*{20}{c}}{{{\bf{b}}_1}}&{\bf{0}}&{{{\bf{b}}_3}}& \cdots &{{{\bf{b}}_p}}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{A{{\bf{b}}_1}}&{A\left( {\bf{0}} \right)}&{A{{\bf{b}}_3}}& \cdots &{A{{\bf{b}}_p}}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{A{{\bf{b}}_1}}&{\bf{0}}&{A{{\bf{b}}_3}}& \cdots &{A{{\bf{b}}_p}}\end{aligned}} \right)\end{aligned}\)

So, if\({{\bf{b}}_2} = {\bf{0}}\), then\(A{{\bf{b}}_2} = {\bf{0}}\).

Thus, ifthe second column of Bis all zeros, thesecond column of the product AB is also zero.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercise 9 mark each statement True or False. Justify each answer.

9. a. In order for a matrix B to be the inverse of A, both equations \(AB = I\) and \(BA = I\) must be true.

b. If A and B are \(n \times n\) and invertible, then \({A^{ - {\bf{1}}}}{B^{ - {\bf{1}}}}\) is the inverse of \(AB\).

c. If \(A = \left( {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right)\) and \(ab - cd \ne {\bf{0}}\), then A is invertible.

d. If A is an invertible \(n \times n\) matrix, then the equation \(Ax = b\) is consistent for each b in \({\mathbb{R}^{\bf{n}}}\).

e. Each elementary matrix is invertible.

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1–4.

1. \(\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\E&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&B\\C&D\end{array}} \right]\)

In exercises 11 and 12, mark each statement True or False. Justify each answer.

a. The definition of the matrix-vector product \(A{\bf{x}}\) is a special case of block multiplication.

b. If \({A_{\bf{1}}}\), \({A_{\bf{2}}}\), \({B_{\bf{1}}}\), and \({B_{\bf{2}}}\) are \(n \times n\) matrices, \[A = \left[ {\begin{array}{*{20}{c}}{{A_{\bf{1}}}}\\{{A_{\bf{2}}}}\end{array}} \right]\] and \(B = \left[ {\begin{array}{*{20}{c}}{{B_{\bf{1}}}}&{{B_{\bf{2}}}}\end{array}} \right]\), then the product \(BA\) is defined, but \(AB\) is not.

[M] Suppose memory or size restrictions prevent your matrix program from working with matrices having more than 32 rows and 32 columns, and suppose some project involves \(50 \times 50\) matrices A and B. Describe the commands or operations of your program that accomplish the following tasks.

a. Compute \(A + B\)

b. Compute \(AB\)

c. Solve \(Ax = b\) for some vector b in \({\mathbb{R}^{50}}\), assuming that \(A\) can be partitioned into a \(2 \times 2\) block matrix \(\left[ {{A_{ij}}} \right]\), with \({A_{11}}\) an invertible \(20 \times 20\) matrix, \({A_{22}}\) an invertible \(30 \times 30\) matrix, and \({A_{12}}\) a zero matrix. [Hint: Describe appropriate smaller systems to solve, without using any matrix inverse.]

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1–4.

4. \[\left[ {\begin{array}{*{20}{c}}I&0\\{ - X}&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&B\\C&D\end{array}} \right]\]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free