Chapter 2: Q20Q (page 93)
If \[n \times n\] matrices \(E\) and \(F\) have the property that \(EF = I\), then \(E\) and \(F\) commute. Explain why?
Short Answer
Matrices \(E\) and \(F\) are inverse to each other.
Chapter 2: Q20Q (page 93)
If \[n \times n\] matrices \(E\) and \(F\) have the property that \(EF = I\), then \(E\) and \(F\) commute. Explain why?
Matrices \(E\) and \(F\) are inverse to each other.
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation. Explain why T is both one-to-one and onto \({\mathbb{R}^n}\). Use equations (1) and (2). Then give a second explanation using one or more theorems.
In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]
7. \[\left[ {\begin{array}{*{20}{c}}X&{\bf{0}}&{\bf{0}}\\Y&{\bf{0}}&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&Z\\{\bf{0}}&{\bf{0}}\\B&I\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\{\bf{0}}&I\end{array}} \right]\]
Suppose block matrix \(A\) on the left side of (7) is invertible and \({A_{{\bf{11}}}}\) is invertible. Show that the Schur component \(S\) of \({A_{{\bf{11}}}}\) is invertible. [Hint: The outside factors on the right side of (7) are always invertible. Verify this.] When \(A\) and \({A_{{\bf{11}}}}\) are invertible, (7) leads to a formula for \({A^{ - {\bf{1}}}}\), using \({S^{ - {\bf{1}}}}\) \(A_{{\bf{11}}}^{ - {\bf{1}}}\), and the other entries in \(A\).
Use partitioned matrices to prove by induction that the product of two lower triangular matrices is also lower triangular. [Hint: \(A\left( {k + 1} \right) \times \left( {k + 1} \right)\) matrix \({A_1}\) can be written in the form below, where \[a\] is a scalar, v is in \({\mathbb{R}^k}\), and Ais a \(k \times k\) lower triangular matrix. See the study guide for help with induction.]
\({A_1} = \left[ {\begin{array}{*{20}{c}}a&{{0^T}}\\0&A\end{array}} \right]\).
In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).
34. \(T\left( {{x_1},{x_2}} \right) = \left( {6{x_1} - 8{x_2}, - 5{x_1} + 7{x_2}} \right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.