Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If \[n \times n\] matrices \(E\) and \(F\) have the property that \(EF = I\), then \(E\) and \(F\) commute. Explain why?

Short Answer

Expert verified

Matrices \(E\) and \(F\) are inverse to each other.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Interpreat the equation \(EF = I\)

If the product \(EF\) is an identity matrix, then \(E\) and \(F\) are inverse of each other.

02

Check commutation for the product \(EF\)

As the matrix \(F\) is inverse of \(E\), then by the proerpty of inverse matrix

\(EF = FE = I\)

So, matrices \(E\) and \(F\) are inverse of each other, therefore product \(EF\) will commute.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose Aand Bare \(n \times n\), Bis invertible, and ABis invertible. Show that Ais invertible. (Hint: Let C=AB, and solve this equation for A.)

Suppose \(CA = {I_n}\)(the \(n \times n\) identity matrix). Show that the equation \(Ax = 0\) has only the trivial solution. Explain why Acannot have more columns than rows.

In exercise 5 and 6, compute the product \(AB\) in two ways: (a) by the definition, where \(A{b_{\bf{1}}}\) and \(A{b_{\bf{2}}}\) are computed separately, and (b) by the row-column rule for computing \(AB\).

\(A = \left( {\begin{aligned}{*{20}{c}}{\bf{4}}&{ - {\bf{2}}}\\{ - {\bf{3}}}&{\bf{0}}\\{\bf{3}}&{\bf{5}}\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{3}}\\{\bf{2}}&{ - {\bf{1}}}\end{aligned}} \right)\)

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1–4.

1. \(\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\E&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&B\\C&D\end{array}} \right]\)

When a deep space probe launched, corrections may be necessary to place the probe on a precisely calculated trajectory. Radio elementary provides a stream of vectors, \({{\bf{x}}_{\bf{1}}},....,{{\bf{x}}_k}\), giving information at different times about how the probe’s position compares with its planned trajectory. Let \({X_k}\) be the matrix \(\left[ {{x_{\bf{1}}}.....{x_k}} \right]\). The matrix \({G_k} = {X_k}X_k^T\) is computed as the radar data are analyzed. When \({x_{k + {\bf{1}}}}\) arrives, a new \({G_{k + {\bf{1}}}}\) must be computed. Since the data vector arrive at high speed, the computational burden could be serve. But partitioned matrix multiplication helps tremendously. Compute the column-row expansions of \({G_k}\) and \({G_{k + {\bf{1}}}}\) and describe what must be computed in order to update \({G_k}\) to \({G_{k + {\bf{1}}}}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free