Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 1 and 2, compute each matrix sum or product if it is defined. If an expression is undefined, explain why. Let

\(A = \left( {\begin{aligned}{*{20}{c}}2&0&{ - 1}\\4&{ - 5}&2\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}7&{ - 5}&1\\1&{ - 4}&{ - 3}\end{aligned}} \right)\), \(C = \left( {\begin{aligned}{*{20}{c}}1&2\\{ - 2}&1\end{aligned}} \right)\), \(D = \left( {\begin{aligned}{*{20}{c}}3&5\\{ - 1}&4\end{aligned}} \right)\) and \(E = \left( {\begin{aligned}{*{20}{c}}{ - 5}\\3\end{aligned}} \right)\)

\( - 2A\), \(B - 2A\), \(AC\), \(CD\).

Short Answer

Expert verified

\( - 2A = \left( {\begin{aligned}{*{20}{c}}{ - 4}&0&2\\{ - 8}&{10}&{ - 4}\end{aligned}} \right)\),

\(B - 2A = \left( {\begin{aligned}{*{20}{c}}3&{ - 5}&3\\{ - 7}&6&{ - 7}\end{aligned}} \right)\),

\(AC\)is not defined and

\(CD = \left( {\begin{aligned}{*{20}{c}}1&{13}\\{ - 7}&{ - 6}\end{aligned}} \right)\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Find the matrix \( - 2A\)

The value of \( - 2A\) can be calculated as follows:

\(\begin{aligned}{c} - 2A = - 2\left( {\begin{aligned}{*{20}{c}}2&0&{ - 1}\\4&{ - 5}&2\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{ - 4}&0&2\\{ - 8}&{10}&{ - 4}\end{aligned}} \right)\end{aligned}\)

02

Find the matrix \(B - 2A\)

The value of \(B - 2A\) can be calculated as follows:

\(\begin{aligned}{c}B - 2A = \left( {\begin{aligned}{*{20}{c}}7&{ - 5}&1\\1&{ - 4}&{ - 3}\end{aligned}} \right) - 2\left( {\begin{aligned}{*{20}{c}}2&0&{ - 1}\\4&{ - 5}&2\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}7&{ - 5}&1\\1&{ - 4}&{ - 3}\end{aligned}} \right) - \left( {\begin{aligned}{*{20}{c}}4&0&{ - 2}\\8&{ - 10}&4\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}3&{ - 5}&3\\{ - 7}&6&{ - 7}\end{aligned}} \right)\end{aligned}\)

03

Find the matrix \(AC\)

The order of matrix \(A\) is \(2 \times 3\), and the order of matrix \(C\) is \(2 \times 2\). The number of column of \(A\) does not match with the number of rows of \(C\). Therefore, the matrix \(AC\) is not defined.

04

Find the matrix \(CD\)

The product \(CD\) can be calculated as follows:

\(\begin{aligned}{c}CD = \left( {\begin{aligned}{*{20}{c}}1&2\\{ - 2}&1\end{aligned}} \right) \times \left( {\begin{aligned}{*{20}{c}}3&5\\{ - 1}&4\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{1 \times 3 + 2 \times \left( { - 1} \right)}&{1 \times 5 + 2 \times 4}\\{\left( { - 2} \right) \times 3 + 1 \times \left( { - 1} \right)}&{\left( { - 2} \right) \times 5 + 1 \times 4}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{3 - 2}&{5 + 8}\\{ - 6 - 1}&{ - 10 + 4}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}1&{13}\\{ - 7}&{ - 6}\end{aligned}} \right)\end{aligned}\)

So, \( - 2A = \left( {\begin{aligned}{*{20}{c}}{ - 4}&0&2\\{ - 8}&{10}&{ - 4}\end{aligned}} \right)\), \(B - 2A = \left( {\begin{aligned}{*{20}{c}}3&{ - 5}&3\\{ - 7}&6&{ - 7}\end{aligned}} \right)\), \(AC\) is not defined and \(CD = \left( {\begin{aligned}{*{20}{c}}1&{13}\\{ - 7}&{ - 6}\end{aligned}} \right)\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exercises 15 and 16 concern arbitrary matrices A, B, and Cfor which the indicated sums and products are defined. Mark each statement True or False. Justify each answer.

15. a. If A and B are \({\bf{2}} \times {\bf{2}}\) with columns \({{\bf{a}}_1},{{\bf{a}}_2}\) and \({{\bf{b}}_1},{{\bf{b}}_2}\) respectively, then \(AB = \left( {\begin{aligned}{*{20}{c}}{{{\bf{a}}_1}{{\bf{b}}_1}}&{{{\bf{a}}_2}{{\bf{b}}_2}}\end{aligned}} \right)\).

b. Each column of ABis a linear combination of the columns of Busing weights from the corresponding column of A.

c. \(AB + AC = A\left( {B + C} \right)\)

d. \({A^T} + {B^T} = {\left( {A + B} \right)^T}\)

e. The transpose of a product of matrices equals the product of their transposes in the same order.

a. Verify that \({A^2} = I\) when \(A = \left[ {\begin{array}{*{20}{c}}1&0\\3&{ - 1}\end{array}} \right]\).

b. Use partitioned matrices to show that \({M^2} = I\) when\(M = \left[ {\begin{array}{*{20}{c}}1&0&0&0\\3&{ - 1}&0&0\\1&0&{ - 1}&0\\0&1&{ - 3}&1\end{array}} \right]\).

Suppose the last column of ABis entirely zero but Bitself has no column of zeros. What can you sayaboutthe columns of A?

Suppose A, B, and Care \(n \times n\) matrices with A, X, and \(A - AX\) invertible, and suppose

\({\left( {A - AX} \right)^{ - 1}} = {X^{ - 1}}B\) …(3)

  1. Explain why B is invertible.
  2. Solve (3) for X. If you need to invert a matrix, explain why that matrix is invertible.

Suppose Aand Bare \(n \times n\), Bis invertible, and ABis invertible. Show that Ais invertible. (Hint: Let C=AB, and solve this equation for A.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free