Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(M) Certain dynamical systems can be studied by examining powers of a matrix, such as those below. Determine what happens to \({A^k}\) and \({B^k}\) as \(k\) increases (for example, try \(k = 2,...,16\)). Try to identify what is special about \(A\) and \(B\). Investigate large powers of other matrices of this type, and make a conjecture about such matrices.

\(A = \left( {\begin{aligned}{*{20}{c}}{.4}&{.2}&{.3}\\{.3}&{.6}&{.3}\\{.3}&{.2}&{.4}\end{aligned}} \right),B = \left( {\begin{aligned

Short Answer

Expert verified

As \(k\) increases, the matrices \({{\mathop{\rm A}\nolimits} ^k}\) and \({{\mathop{\rm B}\nolimits} ^k}\) become \({{\mathop{\rm A}\nolimits} ^k} = \left( {\begin{aligned}{*{20}{c}}{\frac{2}{7}}&{\frac{2}{7}}&{\frac{2}{7}}\\{\frac{3}{7}}&{\frac{3}{7}}&{\frac{3}{7}}\\{\frac{2}{7}}&{\frac{2}{7}}&{\frac{2}{7}}\end{aligned}} \right)\), \({{\mathop{\rm B}\nolimits} ^k} = \left( {\begin{aligned}{*{20}{c}}{\frac{{18}}{{89}}}&{\frac{{18}}{{89}}}&{\frac{{18}}{{89}}}\\{\frac{{33}}{{89}}}&{\frac{{33}}{{89}}}&{\frac{{33}}{{89}}}\\{\frac{{38}}{{89}}}&{\frac{{38}}{{89}}}&{\frac{{38}}{{89}}}\end{aligned}} \right)\).

Step by step solution

01

Determine what happens to \({A^k}\) as k increases

Consider the matrix\(A = \left( {\begin{aligned}{*{20}{c}}{.4}&{.2}&{.3}\\{.3}&{.6}&{.3}\\{.3}&{.2}&{.4}\end{aligned}} \right)\).

Use the MATLAB code to compute the matrices \({A^2},{A^4},{A^8}\) as shown below:

\(\begin{aligned}{l} > > {\mathop{\rm A}\nolimits} = \left( {.4\,\,\,.2\,\,\,.3;\,\,.3\,\,\,.6\,\,\,.3;\,\,.3\,\,\,.2\,\,\,.4} \right)\\ > > {\mathop{\rm A}\nolimits} \^2\end{aligned}\)

\({{\mathop{\rm A}\nolimits} ^2} = \left( {\begin{aligned}{*{20}{c}}{.31}&{.26}&{.30}\\{.39}&{.48}&{.39}\\{.30}&{.26}&{.31}\end{aligned}} \right)\)

\(\begin{aligned}{l} > > {\mathop{\rm A}\nolimits} \^2 = \left( {.31\,\,\,.26\,\,\,.30;\,\,.39\,\,\,.48\,\,\,.39;\,\,.30\,\,\,.26\,\,\,.31} \right)\\ > > {\mathop{\rm A}\nolimits} \^4 = {\mathop{\rm A}\nolimits} \^2 * {\mathop{\rm A}\nolimits} \^2\end{aligned}\)

\({{\mathop{\rm A}\nolimits} ^4} = \left( {\begin{aligned}{*{20}{c}}{.2875}&{.2834}&{.2874}\\{.4251}&{.4332}&{.4251}\\{.2874}&{.2834}&{.2875}\end{aligned}} \right)\)

\(\begin{aligned}{l} > > {\mathop{\rm A}\nolimits} \^4 = \left( {.2857\,\,.2857\,\,\,.2857;\,\,.4285\,\,.4286\,\,\,.4285;\,\,.2857\,\,\,.2857\,\,\,.2857} \right)\\ > > {\mathop{\rm A}\nolimits} \^8 = {\mathop{\rm A}\nolimits} \^4 * {\mathop{\rm A}\nolimits} \^4\end{aligned}\)

\({{\mathop{\rm A}\nolimits} ^8} = \left( {\begin{aligned}{*{20}{c}}{.2857}&{.2857}&{.2857}\\{.4285}&{.4286}&{.4285}\\{.2857}&{.2857}&{.2857}\end{aligned}} \right)\)

As \(k\)increases, the four decimal places become

\({{\mathop{\rm A}\nolimits} ^k} \to \left( {\begin{aligned}{*{20}{c}}{.2857}&{.2857}&{.2857}\\{.4286}&{.4286}&{.4286}\\{.2857}&{.2857}&{.2857}\end{aligned}} \right)\).

The rational format of the matrix \({A^k}\) is shown below:

\({{\mathop{\rm A}\nolimits} ^k} \to \left( {\begin{aligned}{*{20}{c}}{\frac{2}{7}}&{\frac{2}{7}}&{\frac{2}{7}}\\{\frac{3}{7}}&{\frac{3}{7}}&{\frac{3}{7}}\\{\frac{2}{7}}&{\frac{2}{7}}&{\frac{2}{7}}\end{aligned}} \right)\)

02

Determine what happens to \({B^k}\) as k increases

Consider the matrix.

Use the MATLAB code to compute the matrices as shown below:

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

3. Find the inverse of the matrix \(\left( {\begin{aligned}{*{20}{c}}{\bf{8}}&{\bf{5}}\\{ - {\bf{7}}}&{ - {\bf{5}}}\end{aligned}} \right)\).

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]

7. \[\left[ {\begin{array}{*{20}{c}}X&{\bf{0}}&{\bf{0}}\\Y&{\bf{0}}&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&Z\\{\bf{0}}&{\bf{0}}\\B&I\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\{\bf{0}}&I\end{array}} \right]\]

Suppose Ais an \(n \times n\) matrix with the property that the equation \[A{\mathop{\rm x}\nolimits} = 0\] has at least one solution for each b in \({\mathbb{R}^n}\). Without using Theorem 5 or 8, explain why each equation Ax = b has in fact exactly one solution.

In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

34. \(T\left( {{x_1},{x_2}} \right) = \left( {6{x_1} - 8{x_2}, - 5{x_1} + 7{x_2}} \right)\)

a. Verify that \({A^2} = I\) when \(A = \left[ {\begin{array}{*{20}{c}}1&0\\3&{ - 1}\end{array}} \right]\).

b. Use partitioned matrices to show that \({M^2} = I\) when\(M = \left[ {\begin{array}{*{20}{c}}1&0&0&0\\3&{ - 1}&0&0\\1&0&{ - 1}&0\\0&1&{ - 3}&1\end{array}} \right]\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free