Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(M) Certain dynamical systems can be studied by examining powers of a matrix, such as those below. Determine what happens to \({A^k}\) and \({B^k}\) as \(k\) increases (for example, try \(k = 2,...,16\)). Try to identify what is special about \(A\) and \(B\). Investigate large powers of other matrices of this type, and make a conjecture about such matrices.

\(A = \left( {\begin{aligned}{*{20}{c}}{.4}&{.2}&{.3}\\{.3}&{.6}&{.3}\\{.3}&{.2}&{.4}\end{aligned}} \right),B = \left( {\begin{aligned

Short Answer

Expert verified

As \(k\) increases, the matrices \({{\mathop{\rm A}\nolimits} ^k}\) and \({{\mathop{\rm B}\nolimits} ^k}\) become \({{\mathop{\rm A}\nolimits} ^k} = \left( {\begin{aligned}{*{20}{c}}{\frac{2}{7}}&{\frac{2}{7}}&{\frac{2}{7}}\\{\frac{3}{7}}&{\frac{3}{7}}&{\frac{3}{7}}\\{\frac{2}{7}}&{\frac{2}{7}}&{\frac{2}{7}}\end{aligned}} \right)\), \({{\mathop{\rm B}\nolimits} ^k} = \left( {\begin{aligned}{*{20}{c}}{\frac{{18}}{{89}}}&{\frac{{18}}{{89}}}&{\frac{{18}}{{89}}}\\{\frac{{33}}{{89}}}&{\frac{{33}}{{89}}}&{\frac{{33}}{{89}}}\\{\frac{{38}}{{89}}}&{\frac{{38}}{{89}}}&{\frac{{38}}{{89}}}\end{aligned}} \right)\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Determine what happens to \({A^k}\) as k increases

Consider the matrix\(A = \left( {\begin{aligned}{*{20}{c}}{.4}&{.2}&{.3}\\{.3}&{.6}&{.3}\\{.3}&{.2}&{.4}\end{aligned}} \right)\).

Use the MATLAB code to compute the matrices \({A^2},{A^4},{A^8}\) as shown below:

\(\begin{aligned}{l} > > {\mathop{\rm A}\nolimits} = \left( {.4\,\,\,.2\,\,\,.3;\,\,.3\,\,\,.6\,\,\,.3;\,\,.3\,\,\,.2\,\,\,.4} \right)\\ > > {\mathop{\rm A}\nolimits} \^2\end{aligned}\)

\({{\mathop{\rm A}\nolimits} ^2} = \left( {\begin{aligned}{*{20}{c}}{.31}&{.26}&{.30}\\{.39}&{.48}&{.39}\\{.30}&{.26}&{.31}\end{aligned}} \right)\)

\(\begin{aligned}{l} > > {\mathop{\rm A}\nolimits} \^2 = \left( {.31\,\,\,.26\,\,\,.30;\,\,.39\,\,\,.48\,\,\,.39;\,\,.30\,\,\,.26\,\,\,.31} \right)\\ > > {\mathop{\rm A}\nolimits} \^4 = {\mathop{\rm A}\nolimits} \^2 * {\mathop{\rm A}\nolimits} \^2\end{aligned}\)

\({{\mathop{\rm A}\nolimits} ^4} = \left( {\begin{aligned}{*{20}{c}}{.2875}&{.2834}&{.2874}\\{.4251}&{.4332}&{.4251}\\{.2874}&{.2834}&{.2875}\end{aligned}} \right)\)

\(\begin{aligned}{l} > > {\mathop{\rm A}\nolimits} \^4 = \left( {.2857\,\,.2857\,\,\,.2857;\,\,.4285\,\,.4286\,\,\,.4285;\,\,.2857\,\,\,.2857\,\,\,.2857} \right)\\ > > {\mathop{\rm A}\nolimits} \^8 = {\mathop{\rm A}\nolimits} \^4 * {\mathop{\rm A}\nolimits} \^4\end{aligned}\)

\({{\mathop{\rm A}\nolimits} ^8} = \left( {\begin{aligned}{*{20}{c}}{.2857}&{.2857}&{.2857}\\{.4285}&{.4286}&{.4285}\\{.2857}&{.2857}&{.2857}\end{aligned}} \right)\)

As \(k\)increases, the four decimal places become

\({{\mathop{\rm A}\nolimits} ^k} \to \left( {\begin{aligned}{*{20}{c}}{.2857}&{.2857}&{.2857}\\{.4286}&{.4286}&{.4286}\\{.2857}&{.2857}&{.2857}\end{aligned}} \right)\).

The rational format of the matrix \({A^k}\) is shown below:

\({{\mathop{\rm A}\nolimits} ^k} \to \left( {\begin{aligned}{*{20}{c}}{\frac{2}{7}}&{\frac{2}{7}}&{\frac{2}{7}}\\{\frac{3}{7}}&{\frac{3}{7}}&{\frac{3}{7}}\\{\frac{2}{7}}&{\frac{2}{7}}&{\frac{2}{7}}\end{aligned}} \right)\)

02

Determine what happens to \({B^k}\) as k increases

Consider the matrix.

Use the MATLAB code to compute the matrices as shown below:

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free