Chapter 2: Q19SE (page 93)
(M) Certain dynamical systems can be studied by examining powers of a matrix, such as those below. Determine what happens to \({A^k}\) and \({B^k}\) as \(k\) increases (for example, try \(k = 2,...,16\)). Try to identify what is special about \(A\) and \(B\). Investigate large powers of other matrices of this type, and make a conjecture about such matrices.
\(A = \left( {\begin{aligned}{*{20}{c}}{.4}&{.2}&{.3}\\{.3}&{.6}&{.3}\\{.3}&{.2}&{.4}\end{aligned}} \right),B = \left( {\begin{aligned
Short Answer
As \(k\) increases, the matrices \({{\mathop{\rm A}\nolimits} ^k}\) and \({{\mathop{\rm B}\nolimits} ^k}\) become \({{\mathop{\rm A}\nolimits} ^k} = \left( {\begin{aligned}{*{20}{c}}{\frac{2}{7}}&{\frac{2}{7}}&{\frac{2}{7}}\\{\frac{3}{7}}&{\frac{3}{7}}&{\frac{3}{7}}\\{\frac{2}{7}}&{\frac{2}{7}}&{\frac{2}{7}}\end{aligned}} \right)\), \({{\mathop{\rm B}\nolimits} ^k} = \left( {\begin{aligned}{*{20}{c}}{\frac{{18}}{{89}}}&{\frac{{18}}{{89}}}&{\frac{{18}}{{89}}}\\{\frac{{33}}{{89}}}&{\frac{{33}}{{89}}}&{\frac{{33}}{{89}}}\\{\frac{{38}}{{89}}}&{\frac{{38}}{{89}}}&{\frac{{38}}{{89}}}\end{aligned}} \right)\).