Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose P is invertible and \(A = PB{P^{ - 1}}\). Solve for Bin terms of A.

Short Answer

Expert verified

\(B = {P^{ - 1}}AP\)

Step by step solution

01

Condition for an invertible matrix

Theorem 5states that Ais an invertible \(n \times n\) matrix, then for each b in \({\mathbb{R}^n}\), the equation \(Ax = b\) has a unique solution \(x = {A^{ - 1}}b\).

02

Solve for B in terms of A

Multiply both sides of the equation \(A = PB{P^{ - 1}}\) by \({P^{ - 1}}\):

\(\begin{aligned}{c}{P^{ - 1}}A = {P^{ - 1}}PB{P^{ - 1}}\\{P^{ - 1}}A = IB{P^{ - 1}}\\{P^{ - 1}}A = B{P^{ - 1}}\end{aligned}\)

Multiply both sides of theobtainedequation by P:

\(\begin{aligned}{c}{P^{ - 1}}AP = B{P^{ - 1}}P\\{P^{ - 1}}AP = BI\\{P^{ - 1}}AP = B\end{aligned}\)

Thus, \(B = {P^{ - 1}}AP\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use partitioned matrices to prove by induction that the product of two lower triangular matrices is also lower triangular. [Hint: \(A\left( {k + 1} \right) \times \left( {k + 1} \right)\) matrix \({A_1}\) can be written in the form below, where \[a\] is a scalar, v is in \({\mathbb{R}^k}\), and Ais a \(k \times k\) lower triangular matrix. See the study guide for help with induction.]

\({A_1} = \left[ {\begin{array}{*{20}{c}}a&{{0^T}}\\0&A\end{array}} \right]\).

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]

6. \[\left[ {\begin{array}{*{20}{c}}X&{\bf{0}}\\Y&Z\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&{\bf{0}}\\B&C\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\{\bf{0}}&I\end{array}} \right]\]

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]

5. \[\left[ {\begin{array}{*{20}{c}}A&B\\C&{\bf{0}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\X&Y\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\bf{0}}&I\\Z&{\bf{0}}\end{array}} \right]\]

Use matrix algebra to show that if A is invertible and D satisfies \(AD = I\) then \(D = {A^{ - {\bf{1}}}}\).

In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1–4.

3. \[\left[ {\begin{array}{*{20}{c}}{\bf{0}}&I\\I&{\bf{0}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}W&X\\Y&Z\end{array}} \right]\]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free