Chapter 2: Q18Q (page 93)
Suppose P is invertible and \(A = PB{P^{ - 1}}\). Solve for Bin terms of A.
Short Answer
\(B = {P^{ - 1}}AP\)
Chapter 2: Q18Q (page 93)
Suppose P is invertible and \(A = PB{P^{ - 1}}\). Solve for Bin terms of A.
\(B = {P^{ - 1}}AP\)
All the tools & learning materials you need for study success - in one app.
Get started for freeUse partitioned matrices to prove by induction that the product of two lower triangular matrices is also lower triangular. [Hint: \(A\left( {k + 1} \right) \times \left( {k + 1} \right)\) matrix \({A_1}\) can be written in the form below, where \[a\] is a scalar, v is in \({\mathbb{R}^k}\), and Ais a \(k \times k\) lower triangular matrix. See the study guide for help with induction.]
\({A_1} = \left[ {\begin{array}{*{20}{c}}a&{{0^T}}\\0&A\end{array}} \right]\).
In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]
6. \[\left[ {\begin{array}{*{20}{c}}X&{\bf{0}}\\Y&Z\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&{\bf{0}}\\B&C\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\{\bf{0}}&I\end{array}} \right]\]
In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]
5. \[\left[ {\begin{array}{*{20}{c}}A&B\\C&{\bf{0}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\X&Y\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\bf{0}}&I\\Z&{\bf{0}}\end{array}} \right]\]
Use matrix algebra to show that if A is invertible and D satisfies \(AD = I\) then \(D = {A^{ - {\bf{1}}}}\).
In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1–4.
3. \[\left[ {\begin{array}{*{20}{c}}{\bf{0}}&I\\I&{\bf{0}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}W&X\\Y&Z\end{array}} \right]\]
What do you think about this solution?
We value your feedback to improve our textbook solutions.