Chapter 2: Q18Q (page 93)
Suppose P is invertible and \(A = PB{P^{ - 1}}\). Solve for Bin terms of A.
Short Answer
\(B = {P^{ - 1}}AP\)
Chapter 2: Q18Q (page 93)
Suppose P is invertible and \(A = PB{P^{ - 1}}\). Solve for Bin terms of A.
\(B = {P^{ - 1}}AP\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]
6. \[\left[ {\begin{array}{*{20}{c}}X&{\bf{0}}\\Y&Z\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&{\bf{0}}\\B&C\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\{\bf{0}}&I\end{array}} \right]\]
In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).
34. \(T\left( {{x_1},{x_2}} \right) = \left( {6{x_1} - 8{x_2}, - 5{x_1} + 7{x_2}} \right)\)
Suppose the first two columns, \({{\bf{b}}_1}\) and \({{\bf{b}}_2}\), of Bare equal. What can you say about the columns of AB(if ABis defined)? Why?
Assume \(A - s{I_n}\) is invertible and view (8) as a system of two matrix equations. Solve the top equation for \({\bf{x}}\) and substitute into the bottom equation. The result is an equation of the form \(W\left( s \right){\bf{u}} = {\bf{y}}\), where \(W\left( s \right)\) is a matrix that depends upon \(s\). \(W\left( s \right)\) is called the transfer function of the system because it transforms the input \({\bf{u}}\) into the output \({\bf{y}}\). Find \(W\left( s \right)\) and describe how it is related to the partitioned system matrix on the left side of (8). See Exercise 15.
Suppose Ais \(n \times n\) and the equation \(A{\bf{x}} = {\bf{0}}\) has only the trivial solution. Explain why Ahas npivot columns and Ais row equivalent to \({I_n}\). By Theorem 7, this shows that Amust be invertible. (This exercise and Exercise 24 will be cited in Section 2.3.)
What do you think about this solution?
We value your feedback to improve our textbook solutions.