Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let A be a \(6 \times 4\) matrix and B a \(4 \times 6\) matrix. Show that the \(6 \times 6\) matrix \(AB\) cannot be invertible.

Short Answer

Expert verified

It is proved that the \(6 \times 6\) matrix \(AB\) cannot be invertible.

Step by step solution

01

Show that the \(6 \times 6\)matrix \(AB\) cannot be invertible

Consider A as a \(6 \times 4\) matrix and B as a \(4 \times 6\) matrix. The six columns of B are linearly dependent. There is a nonzero x such that \(Bx = 0\) because \(B\) has more columns than rows. Then,

\(\begin{aligned}{c}ABx = A0\\ = 0.\end{aligned}\)

This demonstrates that matrix \(AB\) is not invertible according to the invertible matrix theorem.

Thus, it is proved that the \(6 \times 6\) matrix \(AB\) cannot be invertible.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

33. \(T\left( {{x_1},{x_2}} \right) = \left( { - 5{x_1} + 9{x_2},4{x_1} - 7{x_2}} \right)\)

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation, and let Sand U be functions from \({\mathbb{R}^n}\) into \({\mathbb{R}^n}\) such that \(S\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) and \(\)\(U\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\). Show that \(U\left( v \right) = S\left( v \right)\) for all v in \({\mathbb{R}^n}\). This will show that Thas a unique inverse, as asserted in theorem 9. [Hint: Given any v in \({\mathbb{R}^n}\), we can write \({\mathop{\rm v}\nolimits} = T\left( {\mathop{\rm x}\nolimits} \right)\) for some x. Why? Compute \(S\left( {\mathop{\rm v}\nolimits} \right)\) and \(U\left( {\mathop{\rm v}\nolimits} \right)\)].

Suppose a linear transformation \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) has the property that \(T\left( {\mathop{\rm u}\nolimits} \right) = T\left( {\mathop{\rm v}\nolimits} \right)\) for some pair of distinct vectors u and v in \({\mathbb{R}^n}\). Can Tmap \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\)? Why or why not?

A useful way to test new ideas in matrix algebra, or to make conjectures, is to make calculations with matrices selected at random. Checking a property for a few matrices does not prove that the property holds in general, but it makes the property more believable. Also, if the property is actually false, you may discover this when you make a few calculations.

37. Construct a random \({\bf{4}} \times {\bf{4}}\) matrix Aand test whether \(\left( {A + I} \right)\left( {A - I} \right) = {A^2} - I\). The best way to do this is to compute \(\left( {A + I} \right)\left( {A - I} \right) - \left( {{A^2} - I} \right)\) and verify that this difference is the zero matrix. Do this for three random matrices. Then test \(\left( {A + B} \right)\left( {A - B} \right) = {A^2} - {B^{\bf{2}}}\) the same way for three pairs of random \({\bf{4}} \times {\bf{4}}\) matrices. Report your conclusions.

Suppose the first two columns, \({{\bf{b}}_1}\) and \({{\bf{b}}_2}\), of Bare equal. What can you say about the columns of AB(if ABis defined)? Why?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free