Chapter 2: Q17SE (page 93)
Let A be a \(6 \times 4\) matrix and B a \(4 \times 6\) matrix. Show that the \(6 \times 6\) matrix \(AB\) cannot be invertible.
Short Answer
It is proved that the \(6 \times 6\) matrix \(AB\) cannot be invertible.
Chapter 2: Q17SE (page 93)
Let A be a \(6 \times 4\) matrix and B a \(4 \times 6\) matrix. Show that the \(6 \times 6\) matrix \(AB\) cannot be invertible.
It is proved that the \(6 \times 6\) matrix \(AB\) cannot be invertible.
All the tools & learning materials you need for study success - in one app.
Get started for freeSuppose AB = AC, where Band Care \(n \times p\) matrices and A is invertible. Show that B = C. Is this true, in general, when A is not invertible.
Suppose Tand U are linear transformations from \({\mathbb{R}^n}\) to \({\mathbb{R}^n}\) such that \(T\left( {U{\mathop{\rm x}\nolimits} } \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\) . Is it true that \(U\left( {T{\mathop{\rm x}\nolimits} } \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\)? Why or why not?
Let \(S = \left( {\begin{aligned}{*{20}{c}}0&1&0&0&0\\0&0&1&0&0\\0&0&0&1&0\\0&0&0&0&1\\0&0&0&0&0\end{aligned}} \right)\). Compute \({S^k}\) for \(k = {\bf{2}},...,{\bf{6}}\).
Let \(A = \left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\), and \(D = \left( {\begin{aligned}{*{20}{c}}2&0&0\\0&3&0\\0&0&5\end{aligned}} \right)\). Compute \(AD\) and \(DA\). Explain how the columns or rows of A change when A is multiplied by D on the right or on the left. Find a \(3 \times 3\) matrix B, not the identity matrix or the zero matrix, such that \(AB = BA\).
In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1–4.
1. \(\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\E&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&B\\C&D\end{array}} \right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.