Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Solve the equation \(AB = BC\) for A, assuming that A, B, and C are square and Bis invertible.

Short Answer

Expert verified

\(A = BC{B^{ - 1}}\)

Step by step solution

01

Condition for an invertible matrix

Theorem 5states that Ais an invertible \(n \times n\) matrix, then for each b in \({\mathbb{R}^n}\), the equation \(Ax = b\) has a unique solution \(x = {A^{ - 1}}b\).

02

Solve the equation AB = BC for A

Multiply both sides of the equation \(AB = BC\) by \({B^{ - 1}}\):

\(\begin{aligned}{c}AB{B^{ - 1}} = BC{B^{ - 1}}\\AI = BC{B^{ - 1}}\\A = BC{B^{ - 1}}\end{aligned}\)

Thus, \(A = BC{B^{ - 1}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(A = \left( {\begin{aligned}{*{20}{c}}3&{ - 6}\\{ - 1}&2\end{aligned}} \right)\). Construct a \({\bf{2}} \times {\bf{2}}\) matrix Bsuch that ABis the zero matrix. Use two different nonzero columns for B.

Explain why the columns of an \(n \times n\) matrix Aspan \({\mathbb{R}^{\bf{n}}}\) when

Ais invertible. (Hint:Review Theorem 4 in Section 1.4.)

Use the inverse found in Exercise 1 to solve the system

\(\begin{aligned}{l}{\bf{8}}{{\bf{x}}_{\bf{1}}} + {\bf{6}}{{\bf{x}}_{\bf{2}}} = {\bf{2}}\\{\bf{5}}{{\bf{x}}_{\bf{1}}} + {\bf{4}}{{\bf{x}}_{\bf{2}}} = - {\bf{1}}\end{aligned}\)

In exercise 5 and 6, compute the product \(AB\) in two ways: (a) by the definition, where \(A{b_{\bf{1}}}\) and \(A{b_{\bf{2}}}\) are computed separately, and (b) by the row-column rule for computing \(AB\).

\(A = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{1}}}&{\bf{2}}\\{\bf{5}}&{\bf{4}}\\{\bf{2}}&{ - {\bf{3}}}\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}&{ - {\bf{2}}}\\{ - {\bf{2}}}&{\bf{1}}\end{aligned}} \right)\)

In Exercises 1 and 2, compute each matrix sum or product if it is defined. If an expression is undefined, explain why. Let

\(A = \left( {\begin{aligned}{*{20}{c}}2&0&{ - 1}\\4&{ - 5}&2\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}7&{ - 5}&1\\1&{ - 4}&{ - 3}\end{aligned}} \right)\), \(C = \left( {\begin{aligned}{*{20}{c}}1&2\\{ - 2}&1\end{aligned}} \right)\), \(D = \left( {\begin{aligned}{*{20}{c}}3&5\\{ - 1}&4\end{aligned}} \right)\) and \(E = \left( {\begin{aligned}{*{20}{c}}{ - 5}\\3\end{aligned}} \right)\)

\(A + 2B\), \(3C - E\), \(CB\), \(EB\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free