Chapter 2: Q16SE (page 93)
Let A be an \(n \times n\) singular matrix. Describe how to construct an \(n \times n\) nonzero matrix B such that \(AB = 0\).
Short Answer
It is shown that \(AB = 0\).
Chapter 2: Q16SE (page 93)
Let A be an \(n \times n\) singular matrix. Describe how to construct an \(n \times n\) nonzero matrix B such that \(AB = 0\).
It is shown that \(AB = 0\).
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the inverse found in Exercise 3 to solve the system
\(\begin{aligned}{l}{\bf{8}}{{\bf{x}}_{\bf{1}}} + {\bf{5}}{{\bf{x}}_{\bf{2}}} = - {\bf{9}}\\ - {\bf{7}}{{\bf{x}}_{\bf{1}}} - {\bf{5}}{{\bf{x}}_{\bf{2}}} = {\bf{11}}\end{aligned}\)
Show that block upper triangular matrix \(A\) in Example 5is invertible if and only if both \({A_{{\bf{11}}}}\) and \({A_{{\bf{12}}}}\) are invertible. [Hint: If \({A_{{\bf{11}}}}\) and \({A_{{\bf{12}}}}\) are invertible, the formula for \({A^{ - {\bf{1}}}}\) given in Example 5 actually works as the inverse of \(A\).] This fact about \(A\) is an important part of several computer algorithims that estimates eigenvalues of matrices. Eigenvalues are discussed in chapter 5.
Suppose the last column of ABis entirely zero but Bitself has no column of zeros. What can you sayaboutthe columns of A?
Generalize the idea of Exercise 21(a) [not 21(b)] by constructing a \(5 \times 5\) matrix \(M = \left[ {\begin{array}{*{20}{c}}A&0\\C&D\end{array}} \right]\) such that \({M^2} = I\). Make C a nonzero \(2 \times 3\) matrix. Show that your construction works.
[M] Suppose memory or size restrictions prevent your matrix program from working with matrices having more than 32 rows and 32 columns, and suppose some project involves \(50 \times 50\) matrices A and B. Describe the commands or operations of your program that accomplish the following tasks.
a. Compute \(A + B\)
b. Compute \(AB\)
c. Solve \(Ax = b\) for some vector b in \({\mathbb{R}^{50}}\), assuming that \(A\) can be partitioned into a \(2 \times 2\) block matrix \(\left[ {{A_{ij}}} \right]\), with \({A_{11}}\) an invertible \(20 \times 20\) matrix, \({A_{22}}\) an invertible \(30 \times 30\) matrix, and \({A_{12}}\) a zero matrix. [Hint: Describe appropriate smaller systems to solve, without using any matrix inverse.]
What do you think about this solution?
We value your feedback to improve our textbook solutions.