Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let A be an \(n \times n\) singular matrix. Describe how to construct an \(n \times n\) nonzero matrix B such that \(AB = 0\).

Short Answer

Expert verified

It is shown that \(AB = 0\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Explain the construction of a \(n \times n\) non-zero matrix

There is a non-zero vector v in \({\mathbb{R}^n}\) such that \(A{\mathop{\rm v}\nolimits} = 0\) because A is not invertible. Put \(n\) copies of vector \({\mathop{\rm v}\nolimits} \) in a \(n \times n\) matrix B. It gives

\(\begin{array}{c}AB = A\left( {\begin{array}{*{20}{c}}{\mathop{\rm v}\nolimits} & \ldots &{\mathop{\rm v}\nolimits} \end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{A{\mathop{\rm v}\nolimits} }& \ldots &{A{\mathop{\rm v}\nolimits} }\end{array}} \right)\\ = 0.\end{array}\)

Thus, it is shown that \(AB = 0\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose block matrix \(A\) on the left side of (7) is invertible and \({A_{{\bf{11}}}}\) is invertible. Show that the Schur component \(S\) of \({A_{{\bf{11}}}}\) is invertible. [Hint: The outside factors on the right side of (7) are always invertible. Verify this.] When \(A\) and \({A_{{\bf{11}}}}\) are invertible, (7) leads to a formula for \({A^{ - {\bf{1}}}}\), using \({S^{ - {\bf{1}}}}\) \(A_{{\bf{11}}}^{ - {\bf{1}}}\), and the other entries in \(A\).

In Exercise 10 mark each statement True or False. Justify each answer.

10. a. A product of invertible \(n \times n\) matrices is invertible, and the inverse of the product of their inverses in the same order.

b. If A is invertible, then the inverse of \({A^{ - {\bf{1}}}}\) is A itself.

c. If \(A = \left( {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right)\) and \(ad = bc\), then A is not invertible.

d. If A can be row reduced to the identity matrix, then A must be invertible.

e. If A is invertible, then elementary row operations that reduce A to the identity \({I_n}\) also reduce \({A^{ - {\bf{1}}}}\) to \({I_n}\).

Give a formula for \({\left( {ABx} \right)^T}\), where \({\bf{x}}\) is a vector and \(A\) and \(B\) are matrices of appropriate sizes.

Let T be a linear transformation that maps \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\). Is \({T^{ - 1}}\) also one-to-one?

In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

34. \(T\left( {{x_1},{x_2}} \right) = \left( {6{x_1} - 8{x_2}, - 5{x_1} + 7{x_2}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free