Chapter 2: Q16SE (page 93)
Let A be an \(n \times n\) singular matrix. Describe how to construct an \(n \times n\) nonzero matrix B such that \(AB = 0\).
Short Answer
It is shown that \(AB = 0\).
Chapter 2: Q16SE (page 93)
Let A be an \(n \times n\) singular matrix. Describe how to construct an \(n \times n\) nonzero matrix B such that \(AB = 0\).
It is shown that \(AB = 0\).
All the tools & learning materials you need for study success - in one app.
Get started for freeThe inverse of \(\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}&{\bf{0}}\\C&I&{\bf{0}}\\A&B&I\end{array}} \right]\) is \(\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}&{\bf{0}}\\Z&I&{\bf{0}}\\X&Y&I\end{array}} \right]\). Find X, Y, and Z.
Find the inverse of the matrix \(\left( {\begin{aligned}{*{20}{c}}{\bf{3}}&{ - {\bf{4}}}\\{\bf{7}}&{ - {\bf{8}}}\end{aligned}} \right)\).
A useful way to test new ideas in matrix algebra, or to make conjectures, is to make calculations with matrices selected at random. Checking a property for a few matrices does not prove that the property holds in general, but it makes the property more believable. Also, if the property is actually false, you may discover this when you make a few calculations.
38. Use at least three pairs of random \(4 \times 4\) matrices Aand Bto test the equalities \({\left( {A + B} \right)^T} = {A^T} + {B^T}\) and \({\left( {AB} \right)^T} = {A^T}{B^T}\). (See Exercise 37.) Report your conclusions. (Note:Most matrix programs use \(A'\) for \({A^{\bf{T}}}\).
Suppose Ais a \(3 \times n\) matrix whose columns span \({\mathbb{R}^3}\). Explain how to construct an \(n \times 3\) matrix Dsuch that \(AD = {I_3}\).
Suppose the first two columns, \({{\bf{b}}_1}\) and \({{\bf{b}}_2}\), of Bare equal. What can you say about the columns of AB(if ABis defined)? Why?
What do you think about this solution?
We value your feedback to improve our textbook solutions.