Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let A be an \(n \times n\) singular matrix. Describe how to construct an \(n \times n\) nonzero matrix B such that \(AB = 0\).

Short Answer

Expert verified

It is shown that \(AB = 0\).

Step by step solution

01

Explain the construction of a \(n \times n\) non-zero matrix

There is a non-zero vector v in \({\mathbb{R}^n}\) such that \(A{\mathop{\rm v}\nolimits} = 0\) because A is not invertible. Put \(n\) copies of vector \({\mathop{\rm v}\nolimits} \) in a \(n \times n\) matrix B. It gives

\(\begin{array}{c}AB = A\left( {\begin{array}{*{20}{c}}{\mathop{\rm v}\nolimits} & \ldots &{\mathop{\rm v}\nolimits} \end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{A{\mathop{\rm v}\nolimits} }& \ldots &{A{\mathop{\rm v}\nolimits} }\end{array}} \right)\\ = 0.\end{array}\)

Thus, it is shown that \(AB = 0\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use the inverse found in Exercise 3 to solve the system

\(\begin{aligned}{l}{\bf{8}}{{\bf{x}}_{\bf{1}}} + {\bf{5}}{{\bf{x}}_{\bf{2}}} = - {\bf{9}}\\ - {\bf{7}}{{\bf{x}}_{\bf{1}}} - {\bf{5}}{{\bf{x}}_{\bf{2}}} = {\bf{11}}\end{aligned}\)

Show that block upper triangular matrix \(A\) in Example 5is invertible if and only if both \({A_{{\bf{11}}}}\) and \({A_{{\bf{12}}}}\) are invertible. [Hint: If \({A_{{\bf{11}}}}\) and \({A_{{\bf{12}}}}\) are invertible, the formula for \({A^{ - {\bf{1}}}}\) given in Example 5 actually works as the inverse of \(A\).] This fact about \(A\) is an important part of several computer algorithims that estimates eigenvalues of matrices. Eigenvalues are discussed in chapter 5.

Suppose the last column of ABis entirely zero but Bitself has no column of zeros. What can you sayaboutthe columns of A?

Generalize the idea of Exercise 21(a) [not 21(b)] by constructing a \(5 \times 5\) matrix \(M = \left[ {\begin{array}{*{20}{c}}A&0\\C&D\end{array}} \right]\) such that \({M^2} = I\). Make C a nonzero \(2 \times 3\) matrix. Show that your construction works.

[M] Suppose memory or size restrictions prevent your matrix program from working with matrices having more than 32 rows and 32 columns, and suppose some project involves \(50 \times 50\) matrices A and B. Describe the commands or operations of your program that accomplish the following tasks.

a. Compute \(A + B\)

b. Compute \(AB\)

c. Solve \(Ax = b\) for some vector b in \({\mathbb{R}^{50}}\), assuming that \(A\) can be partitioned into a \(2 \times 2\) block matrix \(\left[ {{A_{ij}}} \right]\), with \({A_{11}}\) an invertible \(20 \times 20\) matrix, \({A_{22}}\) an invertible \(30 \times 30\) matrix, and \({A_{12}}\) a zero matrix. [Hint: Describe appropriate smaller systems to solve, without using any matrix inverse.]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free