Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose Aand Bare \(n \times n\), Bis invertible, and ABis invertible. Show that Ais invertible. (Hint: Let C=AB, and solve this equation for A.)

Short Answer

Expert verified

It is proved that Ais invertible.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Condition for an invertible matrix

Theorem 5states that Ais an invertible \(n \times n\) matrix, then for each b in \({\mathbb{R}^n}\), the equation \(Ax = b\) has a unique solution \(x = {A^{ - 1}}b\).

02

Show that A is invertible

Theorem 6states that Aand Bare \(n \times n\) invertible matrices; the inverse of ABis the product of the inverse of A and B in the reverse order. That is, \({\left( {AB} \right)^{ - 1}} = {B^{ - 1}}{A^{ - 1}}\).

Consider \(C = AB\).

Multiply each side of the equation \(C = AB\) by \({B^{ - 1}}\):

\(\begin{aligned}{c}C{B^{ - 1}} = AB{B^{ - 1}}\\ = AI\\ = A\end{aligned}\)

According to theorem 6, Ais the product of invertible matrices; thus, Ais invertible.

Hence, it is proved that Ais invertible.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If a matrix \(A\) is \({\bf{5}} \times {\bf{3}}\) and the product \(AB\)is \({\bf{5}} \times {\bf{7}}\), what is the size of \(B\)?

Suppose Ais a \(3 \times n\) matrix whose columns span \({\mathbb{R}^3}\). Explain how to construct an \(n \times 3\) matrix Dsuch that \(AD = {I_3}\).

A useful way to test new ideas in matrix algebra, or to make conjectures, is to make calculations with matrices selected at random. Checking a property for a few matrices does not prove that the property holds in general, but it makes the property more believable. Also, if the property is actually false, you may discover this when you make a few calculations.

37. Construct a random \({\bf{4}} \times {\bf{4}}\) matrix Aand test whether \(\left( {A + I} \right)\left( {A - I} \right) = {A^2} - I\). The best way to do this is to compute \(\left( {A + I} \right)\left( {A - I} \right) - \left( {{A^2} - I} \right)\) and verify that this difference is the zero matrix. Do this for three random matrices. Then test \(\left( {A + B} \right)\left( {A - B} \right) = {A^2} - {B^{\bf{2}}}\) the same way for three pairs of random \({\bf{4}} \times {\bf{4}}\) matrices. Report your conclusions.

Suppose a linear transformation \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) has the property that \(T\left( {\mathop{\rm u}\nolimits} \right) = T\left( {\mathop{\rm v}\nolimits} \right)\) for some pair of distinct vectors u and v in \({\mathbb{R}^n}\). Can Tmap \({\mathbb{R}^n}\) onto \({\mathbb{R}^n}\)? Why or why not?

Suppose \(\left( {B - C} \right)D = 0\), where Band Care \(m \times n\) matrices and \(D\) is invertible. Show that B = C.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free