Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose Aand Bare \(n \times n\), Bis invertible, and ABis invertible. Show that Ais invertible. (Hint: Let C=AB, and solve this equation for A.)

Short Answer

Expert verified

It is proved that Ais invertible.

Step by step solution

01

Condition for an invertible matrix

Theorem 5states that Ais an invertible \(n \times n\) matrix, then for each b in \({\mathbb{R}^n}\), the equation \(Ax = b\) has a unique solution \(x = {A^{ - 1}}b\).

02

Show that A is invertible

Theorem 6states that Aand Bare \(n \times n\) invertible matrices; the inverse of ABis the product of the inverse of A and B in the reverse order. That is, \({\left( {AB} \right)^{ - 1}} = {B^{ - 1}}{A^{ - 1}}\).

Consider \(C = AB\).

Multiply each side of the equation \(C = AB\) by \({B^{ - 1}}\):

\(\begin{aligned}{c}C{B^{ - 1}} = AB{B^{ - 1}}\\ = AI\\ = A\end{aligned}\)

According to theorem 6, Ais the product of invertible matrices; thus, Ais invertible.

Hence, it is proved that Ais invertible.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use partitioned matrices to prove by induction that the product of two lower triangular matrices is also lower triangular. [Hint: \(A\left( {k + 1} \right) \times \left( {k + 1} \right)\) matrix \({A_1}\) can be written in the form below, where \[a\] is a scalar, v is in \({\mathbb{R}^k}\), and Ais a \(k \times k\) lower triangular matrix. See the study guide for help with induction.]

\({A_1} = \left[ {\begin{array}{*{20}{c}}a&{{0^T}}\\0&A\end{array}} \right]\).

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation, and let Sand U be functions from \({\mathbb{R}^n}\) into \({\mathbb{R}^n}\) such that \(S\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) and \(\)\(U\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\). Show that \(U\left( v \right) = S\left( v \right)\) for all v in \({\mathbb{R}^n}\). This will show that Thas a unique inverse, as asserted in theorem 9. [Hint: Given any v in \({\mathbb{R}^n}\), we can write \({\mathop{\rm v}\nolimits} = T\left( {\mathop{\rm x}\nolimits} \right)\) for some x. Why? Compute \(S\left( {\mathop{\rm v}\nolimits} \right)\) and \(U\left( {\mathop{\rm v}\nolimits} \right)\)].

In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

33. \(T\left( {{x_1},{x_2}} \right) = \left( { - 5{x_1} + 9{x_2},4{x_1} - 7{x_2}} \right)\)

If A, B, and X are \(n \times n\) invertible matrices, does the equation \({C^{ - 1}}\left( {A + X} \right){B^{ - 1}} = {I_n}\) have a solution, X? If so, find it.

Suppose \(AD = {I_m}\) (the \(m \times m\) identity matrix). Show that for any b in \({\mathbb{R}^m}\), the equation \(A{\mathop{\rm x}\nolimits} = {\mathop{\rm b}\nolimits} \) has a solution. (Hint: Think about the equation \(AD{\mathop{\rm b}\nolimits} = {\mathop{\rm b}\nolimits} \).) Explain why Acannot have more rows than columns.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free