Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}0\\0\\1\end{aligned}} \right)\) and \(x = \left( {\begin{aligned}{*{20}{c}}1\\5\\3\end{aligned}} \right)\). Determine \(P\) and \(Q\) as in Exercise 13, and compute \(Px\) and \(Qx\). The figure shows that \(Qx\) is the reflection of the x through \({x_1}{x_2}\)-plane.

Short Answer

Expert verified

\(P = \left( {\begin{aligned}{*{20}{c}}0&0&0\\0&0&0\\0&0&1\end{aligned}} \right),Q = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\0&0&{ - 1}\end{aligned}} \right)\), \(P{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}0\\0\\3\end{aligned}} \right)\), \(Q{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}1\\5\\{ - 3}\end{aligned}} \right)\).

Step by step solution

01

Determine \(P\) and \(Q\) as in Exercise 13

In Exercise 13, it is given that u is in \({\mathbb{R}^n}\) with \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm u}\nolimits} = 1\). Let \(P = {\mathop{\rm u}\nolimits} {{\mathop{\rm u}\nolimits} ^T}\) (an outer product) and \(Q = I - 2P\).

Calculate \(P = {\mathop{\rm u}\nolimits} {{\mathop{\rm u}\nolimits} ^T}\) as shown below.

\(\begin{aligned}{c}P = {\mathop{\rm u}\nolimits} {{\mathop{\rm u}\nolimits} ^T}\\ = \left( {\begin{aligned}{*{20}{c}}0\\0\\1\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}0&0&1\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}0&0&0\\0&0&0\\0&0&1\end{aligned}} \right)\end{aligned}\)

Calculate \(Q = I - 2P\) as shown below.

\(\begin{aligned}{c}Q = I - 2P\\ = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{aligned}} \right) - 2\left( {\begin{aligned}{*{20}{c}}0&0&0\\0&0&0\\0&0&1\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{aligned}} \right) - \left( {\begin{aligned}{*{20}{c}}0&0&0\\0&0&0\\0&0&2\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\0&0&{ - 1}\end{aligned}} \right)\end{aligned}\)

Thus, \(P = \left( {\begin{aligned}{*{20}{c}}0&0&0\\0&0&0\\0&0&1\end{aligned}} \right),Q = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\0&0&{ - 1}\end{aligned}} \right)\).

02

Determine \(Px\) and \(Qx\)

It is given that \(x = \left( {\begin{aligned}{*{20}{c}}1\\5\\3\end{aligned}} \right)\).

Calculate \(Px\) a shown below.

\(\begin{aligned}{c}P{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}0&0&0\\0&0&0\\0&0&1\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1\\5\\3\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{0 + 0 + 0}\\{0 + 0 + 0}\\{0 + 0 + 3}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}0\\0\\3\end{aligned}} \right)\end{aligned}\)

Calculate \(Qx\) as shown below.

\(\begin{aligned}{c}Q{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}1&0&0\\0&1&0\\0&0&{ - 1}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1\\5\\3\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{1 + 0 + 0}\\{0 + 5 + 0}\\{0 + 0 - 3}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}1\\5\\{ - 3}\end{aligned}} \right)\end{aligned}\)

Thus, \(P{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}0\\0\\3\end{aligned}} \right)\),

\(Q{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}1\\5\\{ - 3}\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercise 10 mark each statement True or False. Justify each answer.

10. a. A product of invertible \(n \times n\) matrices is invertible, and the inverse of the product of their inverses in the same order.

b. If A is invertible, then the inverse of \({A^{ - {\bf{1}}}}\) is A itself.

c. If \(A = \left( {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right)\) and \(ad = bc\), then A is not invertible.

d. If A can be row reduced to the identity matrix, then A must be invertible.

e. If A is invertible, then elementary row operations that reduce A to the identity \({I_n}\) also reduce \({A^{ - {\bf{1}}}}\) to \({I_n}\).

In Exercise 9 mark each statement True or False. Justify each answer.

9. a. In order for a matrix B to be the inverse of A, both equations \(AB = I\) and \(BA = I\) must be true.

b. If A and B are \(n \times n\) and invertible, then \({A^{ - {\bf{1}}}}{B^{ - {\bf{1}}}}\) is the inverse of \(AB\).

c. If \(A = \left( {\begin{aligned}{*{20}{c}}a&b\\c&d\end{aligned}} \right)\) and \(ab - cd \ne {\bf{0}}\), then A is invertible.

d. If A is an invertible \(n \times n\) matrix, then the equation \(Ax = b\) is consistent for each b in \({\mathbb{R}^{\bf{n}}}\).

e. Each elementary matrix is invertible.

1. Find the inverse of the matrix \(\left( {\begin{aligned}{*{20}{c}}{\bf{8}}&{\bf{6}}\\{\bf{5}}&{\bf{4}}\end{aligned}} \right)\).

Show that if the columns of Bare linearly dependent, then so are the columns of AB.

Suppose Aand Bare \(n \times n\), Bis invertible, and ABis invertible. Show that Ais invertible. (Hint: Let C=AB, and solve this equation for A.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free