Chapter 2: Q14Q (page 93)
Suppose \(\left( {B - C} \right)D = 0\), where Band Care \(m \times n\) matrices and \(D\) is invertible. Show that B = C.
Short Answer
It is proved that \(B = C\).
Chapter 2: Q14Q (page 93)
Suppose \(\left( {B - C} \right)D = 0\), where Band Care \(m \times n\) matrices and \(D\) is invertible. Show that B = C.
It is proved that \(B = C\).
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(X\) be \(m \times n\) data matrix such that \({X^T}X\) is invertible., and let \(M = {I_m} - X{\left( {{X^T}X} \right)^{ - {\bf{1}}}}{X^T}\). Add a column \({x_{\bf{0}}}\) to the data and form
\(W = \left[ {\begin{array}{*{20}{c}}X&{{x_{\bf{0}}}}\end{array}} \right]\)
Compute \({W^T}W\). The \(\left( {{\bf{1}},{\bf{1}}} \right)\) entry is \({X^T}X\). Show that the Schur complement (Exercise 15) of \({X^T}X\) can be written in the form \({\bf{x}}_{\bf{0}}^TM{{\bf{x}}_{\bf{0}}}\). It can be shown that the quantity \({\left( {{\bf{x}}_{\bf{0}}^TM{{\bf{x}}_{\bf{0}}}} \right)^{ - {\bf{1}}}}\) is the \(\left( {{\bf{2}},{\bf{2}}} \right)\)-entry in \({\left( {{W^T}W} \right)^{ - {\bf{1}}}}\). This entry has a useful statistical interpretation, under appropriate hypotheses.
In the study of engineering control of physical systems, a standard set of differential equations is transformed by Laplace transforms into the following system of linear equations:
\(\left[ {\begin{array}{*{20}{c}}{A - s{I_n}}&B\\C&{{I_m}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{\bf{x}}\\{\bf{u}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\bf{0}}\\{\bf{y}}\end{array}} \right]\)
Where \(A\) is \(n \times n\), \(B\) is \(n \times m\), \(C\) is \(m \times n\), and \(s\) is a variable. The vector \({\bf{u}}\) in \({\mathbb{R}^m}\) is the “input” to the system, \({\bf{y}}\) in \({\mathbb{R}^m}\) is the “output” and \({\bf{x}}\) in \({\mathbb{R}^n}\) is the “state” vector. (Actually, the vectors \({\bf{x}}\), \({\bf{u}}\) and \({\bf{v}}\) are functions of \(s\), but we suppress this fact because it does not affect the algebraic calculations in Exercises 19 and 20.)
If A, B, and X are \(n \times n\) invertible matrices, does the equation \({C^{ - 1}}\left( {A + X} \right){B^{ - 1}} = {I_n}\) have a solution, X? If so, find it.
In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5–8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]
8. \[\left[ {\begin{array}{*{20}{c}}A&B\\{\bf{0}}&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}X&Y&Z\\{\bf{0}}&{\bf{0}}&I\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&I\end{array}} \right]\]
In exercise 5 and 6, compute the product \(AB\) in two ways: (a) by the definition, where \(A{b_{\bf{1}}}\) and \(A{b_{\bf{2}}}\) are computed separately, and (b) by the row-column rule for computing \(AB\).
\(A = \left( {\begin{aligned}{*{20}{c}}{ - {\bf{1}}}&{\bf{2}}\\{\bf{5}}&{\bf{4}}\\{\bf{2}}&{ - {\bf{3}}}\end{aligned}} \right)\), \(B = \left( {\begin{aligned}{*{20}{c}}{\bf{3}}&{ - {\bf{2}}}\\{ - {\bf{2}}}&{\bf{1}}\end{aligned}} \right)\)
Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation, and let Sand U be functions from \({\mathbb{R}^n}\) into \({\mathbb{R}^n}\) such that \(S\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) and \(\)\(U\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\). Show that \(U\left( v \right) = S\left( v \right)\) for all v in \({\mathbb{R}^n}\). This will show that Thas a unique inverse, as asserted in theorem 9. [Hint: Given any v in \({\mathbb{R}^n}\), we can write \({\mathop{\rm v}\nolimits} = T\left( {\mathop{\rm x}\nolimits} \right)\) for some x. Why? Compute \(S\left( {\mathop{\rm v}\nolimits} \right)\) and \(U\left( {\mathop{\rm v}\nolimits} \right)\)].
What do you think about this solution?
We value your feedback to improve our textbook solutions.