Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An \(m \times n\) lower triangular matrix is one whose enteries below the main diagonal are 0’s (as in Exercise 8). When is a square upper triangular matrix invertible? Justify your answer.

Short Answer

Expert verified

A lower triangular matrix is invertible as it can be reduced in the echelon form.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

State the condition of an invertible matrix

If a lower triangular matrix has non-zero diagonal elements, it can be converted into the echelon form. Hence, it can be inverted.

02

Consider the matrix of exercise 8

The matrix \(\left[ {\begin{array}{*{20}{c}}5&0&0\\{ - 3}&{ - 7}&0\\8&5&{ - 1}\end{array}} \right]\) has non-zero diagonal elements. Hence it is invertible, and it can be reduced into the echelon form.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the inverse of the matrix \(\left( {\begin{aligned}{*{20}{c}}{\bf{3}}&{ - {\bf{4}}}\\{\bf{7}}&{ - {\bf{8}}}\end{aligned}} \right)\).

Suppose \({A_{{\bf{11}}}}\) is invertible. Find \(X\) and \(Y\) such that

\[\left[ {\begin{array}{*{20}{c}}{{A_{{\bf{11}}}}}&{{A_{{\bf{12}}}}}\\{{A_{{\bf{21}}}}}&{{A_{{\bf{22}}}}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\X&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{A_{{\bf{11}}}}}&{\bf{0}}\\{\bf{0}}&S\end{array}} \right]\left[ {\begin{array}{*{20}{c}}I&Y\\{\bf{0}}&I\end{array}} \right]\]

Where \(S = {A_{{\bf{22}}}} - {A_{21}}A_{{\bf{11}}}^{ - {\bf{1}}}{A_{{\bf{12}}}}\). The matrix \(S\) is called the Schur complement of \({A_{{\bf{11}}}}\). Likewise, if \({A_{{\bf{22}}}}\) is invertible, the matrix \({A_{{\bf{11}}}} - {A_{{\bf{12}}}}A_{{\bf{22}}}^{ - {\bf{1}}}{A_{{\bf{21}}}}\) is called the Schur complement of \({A_{{\bf{22}}}}\). Such expressions occur frequently in the theory of systems engineering, and elsewhere.

Assume \(A - s{I_n}\) is invertible and view (8) as a system of two matrix equations. Solve the top equation for \({\bf{x}}\) and substitute into the bottom equation. The result is an equation of the form \(W\left( s \right){\bf{u}} = {\bf{y}}\), where \(W\left( s \right)\) is a matrix that depends upon \(s\). \(W\left( s \right)\) is called the transfer function of the system because it transforms the input \({\bf{u}}\) into the output \({\bf{y}}\). Find \(W\left( s \right)\) and describe how it is related to the partitioned system matrix on the left side of (8). See Exercise 15.

Show that \({I_n}A = A\) when \(A\) is \(m \times n\) matrix. (Hint: Use the (column) definition of \({I_n}A\).)

If a matrix \(A\) is \({\bf{5}} \times {\bf{3}}\) and the product \(AB\)is \({\bf{5}} \times {\bf{7}}\), what is the size of \(B\)?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free