Chapter 2: Q13Q (page 93)
Suppose AB = AC, where Band Care \(n \times p\) matrices and A is invertible. Show that B = C. Is this true, in general, when A is not invertible.
Short Answer
It is proved that \(B = C\).
Chapter 2: Q13Q (page 93)
Suppose AB = AC, where Band Care \(n \times p\) matrices and A is invertible. Show that B = C. Is this true, in general, when A is not invertible.
It is proved that \(B = C\).
All the tools & learning materials you need for study success - in one app.
Get started for freeSuppose the transfer function W(s) in Exercise 19 is invertible for some s. It can be showed that the inverse transfer function \(W{\left( s \right)^{ - {\bf{1}}}}\), which transforms outputs into inputs, is the Schur complement of \(A - BC - s{I_n}\) for the matrix below. Find the Sachur complement. See Exercise 15.
\(\left[ {\begin{array}{*{20}{c}}{A - BC - s{I_n}}&B\\{ - C}&{{I_m}}\end{array}} \right]\)
Suppose Aand Bare \(n \times n\), Bis invertible, and ABis invertible. Show that Ais invertible. (Hint: Let C=AB, and solve this equation for A.)
In Exercises 27 and 28, view vectors in \({\mathbb{R}^n}\) as \(n \times 1\) matrices. For \({\mathop{\rm u}\nolimits} \) and \({\mathop{\rm v}\nolimits} \) in \({\mathbb{R}^n}\), the matrix product \({{\mathop{\rm u}\nolimits} ^T}v\) is a \(1 \times 1\) matrix, called the scalar product, or inner product, of u and v. It is usually written as a single real number without brackets. The matrix product \({{\mathop{\rm uv}\nolimits} ^T}\) is an \(n \times n\) matrix, called the outer product of u and v. The products \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \) and \({{\mathop{\rm uv}\nolimits} ^T}\) will appear later in the text.
27. Let \({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 2}\\3\\{ - 4}\end{aligned}} \right)\) and \({\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}a\\b\\c\end{aligned}} \right)\). Compute \({{\mathop{\rm u}\nolimits} ^T}{\mathop{\rm v}\nolimits} \), \({{\mathop{\rm v}\nolimits} ^T}{\mathop{\rm u}\nolimits} \),\({{\mathop{\rm uv}\nolimits} ^T}\), and \({\mathop{\rm v}\nolimits} {{\mathop{\rm u}\nolimits} ^T}\).
In Exercises 1–9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1–4.
1. \(\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\E&I\end{array}} \right]\left[ {\begin{array}{*{20}{c}}A&B\\C&D\end{array}} \right]\)
Prove Theorem 2(d). (Hint: The \(\left( {i,j} \right)\)- entry in \(\left( {rA} \right)B\) is \(\left( {r{a_{i1}}} \right){b_{1j}} + ... + \left( {r{a_{in}}} \right){b_{nj}}\).)
What do you think about this solution?
We value your feedback to improve our textbook solutions.