Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(A = \left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\), and \(D = \left( {\begin{aligned}{*{20}{c}}2&0&0\\0&3&0\\0&0&5\end{aligned}} \right)\). Compute \(AD\) and \(DA\). Explain how the columns or rows of A change when A is multiplied by D on the right or on the left. Find a \(3 \times 3\) matrix B, not the identity matrix or the zero matrix, such that \(AB = BA\).

Short Answer

Expert verified

The products are\(AD = \left( {\begin{aligned}{*{20}{c}}2&3&5\\2&6&{15}\\2&{12}&{25}\end{aligned}} \right)\), and\(DA = \left( {\begin{aligned}{*{20}{c}}2&2&2\\3&6&9\\5&{20}&{25}\end{aligned}} \right)\).

Each column of matrix A is multiplied by the appropriate diagonal entry of matrix D using right-multiplication by the diagonal matrix D. Each row of matrix A is multiplied by the appropriate diagonal entry of D when left-multiplication by D is used.

It is proved that \(AB = BA\).

Step by step solution

01

Definition of matrix multiplication

Consider two matrices P and Q of order\(m \times n\)and\(n \times p\), respectively. The order of the product PQ matrix is\(m \times p\).

Let\({{\bf{q}}_1},{{\bf{q}}_2},...,{{\bf{q}}_n}\)be the columns of the matrix Q. Then, the product PQ is obtained as shown below:

\(\begin{aligned}{c}PQ = P\left( {\begin{aligned}{*{20}{c}}{{{\bf{q}}_1}}&{{{\bf{q}}_2}}& \cdots &{{{\bf{q}}_n}}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{P{{\bf{q}}_1}}&{P{{\bf{q}}_2}}& \cdots &{P{{\bf{q}}_n}}\end{aligned}} \right)\end{aligned}\)

02

Obtain the product AD

Consider the matrices\(A = \left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\)and\(D = \left( {\begin{aligned}{*{20}{c}}2&0&0\\0&3&0\\0&0&5\end{aligned}} \right)\).

Obtain the product of matrices\(A = \left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\)and\(D = \left( {\begin{aligned}{*{20}{c}}2&0&0\\0&3&0\\0&0&5\end{aligned}} \right)\)as shown below:

\(\begin{aligned}{c}AD = \left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}2&0&0\\0&3&0\\0&0&5\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{2 + 0 + 0}&{0 + 3 + 0}&{0 + 0 + 5}\\{2 + 0 + 0}&{0 + 6 + 0}&{0 + 0 + 15}\\{2 + 0 + 0}&{0 + 12 + 0}&{0 + 0 + 25}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}2&3&5\\2&6&{15}\\2&{12}&{25}\end{aligned}} \right)\end{aligned}\)

Thus, \(AD = \left( {\begin{aligned}{*{20}{c}}2&3&5\\2&6&{15}\\2&{12}&{25}\end{aligned}} \right)\).

03

Obtain the product AD

Consider the matrices\(A = \left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\)and\(D = \left( {\begin{aligned}{*{20}{c}}2&0&0\\0&3&0\\0&0&5\end{aligned}} \right)\).

Obtain the product of matrices\(D = \left( {\begin{aligned}{*{20}{c}}2&0&0\\0&3&0\\0&0&5\end{aligned}} \right)\)and\(A = \left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\)as shown below:

\(\begin{aligned}{c}DA = \left( {\begin{aligned}{*{20}{c}}2&0&0\\0&3&0\\0&0&5\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{2 + 0 + 0}&{2 + 0 + 0}&{2 + 0 + 0}\\{0 + 3 + 0}&{0 + 6 + 0}&{0 + 9 + 0}\\{0 + 0 + 5}&{0 + 0 + 20}&{0 + 0 + 25}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}2&2&2\\3&6&9\\5&{20}&{25}\end{aligned}} \right)\end{aligned}\)

Thus, \(DA = \left( {\begin{aligned}{*{20}{c}}2&2&2\\3&6&9\\5&{20}&{25}\end{aligned}} \right)\). So, \(AD \ne DA\).

04

Right-multiplication and left-multiplication

Each column of matrix A, that is\(\left( {\begin{aligned}{*{20}{c}}1\\1\\1\end{aligned}} \right)\), \(\left( {\begin{aligned}{*{20}{c}}1\\2\\4\end{aligned}} \right)\), and \(\left( {\begin{aligned}{*{20}{c}}1\\3\\5\end{aligned}} \right)\)is multiplied by the appropriate diagonal entry of matrix D using right-multiplication by the diagonal matrix D. Each row of matrix A is multiplied by the appropriate diagonal entry of D when left-multiplication by D is used.

05

Construct a \(3 \times 3\) matrix, and obtain the product AB

The matrix\(B = \left( {\begin{aligned}{*{20}{c}}{ - 2}&0&0\\0&{ - 2}&0\\0&0&{ - 2}\end{aligned}} \right)\).

Obtain the product of matrices\(A = \left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\)and\(B = \left( {\begin{aligned}{*{20}{c}}{ - 2}&0&0\\0&{ - 2}&0\\0&0&{ - 2}\end{aligned}} \right)\)as shown below:

\(\begin{aligned}{c}AB = \left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}{ - 2}&0&0\\0&{ - 2}&0\\0&0&{ - 2}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{ - 2 + 0 + 0}&{0 - 2 + 0}&{0 + 0 - 2}\\{ - 2 + 0 + 0}&{0 - 4 + 0}&{0 + 0 - 6}\\{ - 2 + 0 + 0}&{0 - 8 + 0}&{0 + 0 - 10}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{ - 2}&{ - 2}&{ - 2}\\{ - 2}&{ - 4}&{ - 6}\\{ - 2}&{ - 8}&{ - 10}\end{aligned}} \right)\end{aligned}\)

Thus, \(AB = \left( {\begin{aligned}{*{20}{c}}{ - 2}&{ - 2}&{ - 2}\\{ - 2}&{ - 4}&{ - 6}\\{ - 2}&{ - 8}&{ - 10}\end{aligned}} \right)\).

06

Obtain the product BA

Obtain the product of matrices\(B = \left( {\begin{aligned}{*{20}{c}}{ - 2}&0&0\\0&{ - 2}&0\\0&0&{ - 2}\end{aligned}} \right)\)and\(A = \left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\)as shown below:

\(\begin{aligned}{c}BA = \left( {\begin{aligned}{*{20}{c}}{ - 2}&0&0\\0&{ - 2}&0\\0&0&{ - 2}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}1&1&1\\1&2&3\\1&4&5\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{ - 2 + 0 + 0}&{ - 2 + 0 + 0}&{ - 2 + 0 + 0}\\{0 - 2 + 0}&{0 - 4 + 0}&{0 - 6 + 0}\\{0 + 0 - 2}&{0 + 0 - 8}&{0 + 0 - 10}\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}{ - 2}&{ - 2}&{ - 2}\\{ - 2}&{ - 4}&{ - 6}\\{ - 2}&{ - 8}&{ - 10}\end{aligned}} \right)\end{aligned}\)

Thus,\(BA = \left( {\begin{aligned}{*{20}{c}}{ - 2}&{ - 2}&{ - 2}\\{ - 2}&{ - 4}&{ - 6}\\{ - 2}&{ - 8}&{ - 10}\end{aligned}} \right)\). So,\(AB = BA\).

Therefore, \(AD = \left( {\begin{aligned}{*{20}{c}}2&3&5\\2&6&{15}\\2&{12}&{25}\end{aligned}} \right)\), and \(DA = \left( {\begin{aligned}{*{20}{c}}2&2&2\\3&6&9\\5&{20}&{25}\end{aligned}} \right)\). And it is proved that \(AB = BA\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1โ€“9, assume that the matrices are partitioned conformably for block multiplication. Compute the products shown in Exercises 1โ€“4.

3. \[\left[ {\begin{array}{*{20}{c}}{\bf{0}}&I\\I&{\bf{0}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}W&X\\Y&Z\end{array}} \right]\]

In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).

33. \(T\left( {{x_1},{x_2}} \right) = \left( { - 5{x_1} + 9{x_2},4{x_1} - 7{x_2}} \right)\)

Let Abe an invertible \(n \times n\) matrix, and let \(B\) be an \(n \times p\) matrix. Explain why \({A^{ - 1}}B\) can be computed by row reduction: If\(\left( {\begin{aligned}{*{20}{c}}A&B\end{aligned}} \right) \sim ... \sim \left( {\begin{aligned}{*{20}{c}}I&X\end{aligned}} \right)\), then \(X = {A^{ - 1}}B\).

If Ais larger than \(2 \times 2\), then row reduction of \(\left( {\begin{aligned}{*{20}{c}}A&B\end{aligned}} \right)\) is much faster than computing both \({A^{ - 1}}\) and \({A^{ - 1}}B\).

Suppose Tand U are linear transformations from \({\mathbb{R}^n}\) to \({\mathbb{R}^n}\) such that \(T\left( {U{\mathop{\rm x}\nolimits} } \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\) . Is it true that \(U\left( {T{\mathop{\rm x}\nolimits} } \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\)? Why or why not?

In Exercises 1โ€“9, assume that the matrices are partitioned conformably for block multiplication. In Exercises 5โ€“8, find formulas for X, Y, and Zin terms of A, B, and C, and justify your calculations. In some cases, you may need to make assumptions about the size of a matrix in order to produce a formula. [Hint:Compute the product on the left, and set it equal to the right side.]

5. \[\left[ {\begin{array}{*{20}{c}}A&B\\C&{\bf{0}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}I&{\bf{0}}\\X&Y\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\bf{0}}&I\\Z&{\bf{0}}\end{array}} \right]\]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free