Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider the problem of determining whether the following system of equations is consistent for all \({b_1},{b_2},{b_3}\):

\(\begin{aligned}{c}{\bf{2}}{x_1} - {\bf{4}}{x_2} - {\bf{2}}{x_3} = {b_1}\\ - {\bf{5}}{x_1} + {x_2} + {x_3} = {b_2}\\{\bf{7}}{x_1} - {\bf{5}}{x_2} - {\bf{3}}{x_3} = {b_3}\end{aligned}\)

  1. Define appropriate vectors, and restate the problem in terms of Span \(\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},{{\bf{v}}_3}} \right\}\). Then solve that problem.
  1. Define an appropriate matrix, and restate the problem using the phrase “columns of A.”
  1. Define an appropriate linear transformation T using the matrix in (b), and restate the problem in terms of T.

Short Answer

Expert verified

a. Vectorb is in the span \(\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},{{\bf{v}}_3}} \right\}\).

b. Vector b is in the linear combination of the columns of matrix A.

c. Vector b is in the range of T.

Step by step solution

01

(a) Step 1: Write the system in the vector form

The system of equations\(2{x_1} - 4{x_2} - 2{x_3} = {b_1}\),\( - 5{x_1} + {x_2} + {x_3} = {b_2}\),and\(7{x_1} - 5{x_2} - 3{x_3} = {b_3}\) can be represented in the matrix equation form \(A{\bf{x}} = {\bf{b}}\) as follows:

\(\left( {\begin{aligned}{*{20}{c}}2&{ - 4}&{ - 2}\\{ - 5}&1&1\\7&{ - 5}&{ - 3}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}{{b_1}}\\{{b_2}}\\{{b_3}}\end{aligned}} \right)\)

Assume that the column vectors are \({{\bf{v}}_1} = \left( {\begin{aligned}{*{20}{c}}2\\{ - 5}\\7\end{aligned}} \right)\), \({{\bf{v}}_2} = \left( {\begin{aligned}{*{20}{c}}{ - 4}\\1\\{ - 5}\end{aligned}} \right)\), \({{\bf{v}}_3} = \left( {\begin{aligned}{*{20}{c}}{ - 2}\\1\\{ - 3}\end{aligned}} \right)\), and \({\bf{b}} = \left( {\begin{aligned}{*{20}{c}}{{b_1}}\\{{b_2}}\\{{b_3}}\end{aligned}} \right)\).

02

Convert the matrix into the row-reduced echelon form

Row reduce matrix\(A = \left( {\begin{aligned}{*{20}{c}}2&{ - 4}&{ - 2}\\{ - 5}&1&1\\7&{ - 5}&{ - 3}\end{aligned}} \right)\).

Use the \(2{x_1}\) term in the first equation to eliminate the \( - 5{x_1}\) term from the second equation. Add \(\frac{5}{2}\) times row one to row two.Then, use the \(2{x_1}\) term in the first equation to eliminate the \(7{x_1}\) term from the third equation. Add \( - \frac{7}{2}\) times row one to row two.

\(\left( {\begin{aligned}{*{20}{c}}2&{ - 4}&{ - 2}\\0&{ - 9}&{ - 4}\\7&{ - 5}&{ - 3}\end{aligned}} \right) \sim \left( {\begin{aligned}{*{20}{c}}2&{ - 4}&{ - 2}\\0&{ - 9}&{ - 4}\\0&9&4\end{aligned}} \right)\)

Add rows two and three.

\(\left( {\begin{aligned}{*{20}{c}}2&{ - 4}&{ - 2}\\0&{ - 9}&{ - 4}\\0&9&4\end{aligned}} \right) \sim \left( {\begin{aligned}{*{20}{c}}2&{ - 4}&{ - 2}\\0&{ - 9}&{ - 4}\\0&0&0\end{aligned}} \right)\)

In the above augmented matrix, there is one free variable in the third equation, or there is no pivot position in each row. So, the system of equations is inconsistent.

Thus, the matrix of the columns does not span \(\left\{ {{{\bf{v}}_1},{{\bf{v}}_2},{{\bf{v}}_3}} \right\}\).

03

(b) Step 3: Write in terms of the columns of A

The system of equations\(2{x_1} - 4{x_2} - 2{x_3} = {b_1}\),\( - 5{x_1} + {x_2} + {x_3} = {b_2}\)and\(7{x_1} - 5{x_2} - 3{x_3} = {b_3}\), or matrix \(A = \left( {\begin{aligned}{*{20}{c}}2&{ - 4}&{ - 2}\\{ - 5}&1&1\\7&{ - 5}&{ - 3}\end{aligned}} \right)\) is shown below in the vector form:

\({x_1}\left( {\begin{aligned}{*{20}{c}}2\\{ - 5}\\7\end{aligned}} \right) + {x_2}\left( {\begin{aligned}{*{20}{c}}{ - 4}\\1\\{ - 5}\end{aligned}} \right) + {x_3}\left( {\begin{aligned}{*{20}{c}}{ - 2}\\1\\{ - 3}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}{{b_1}}\\{{b_2}}\\{{b_3}}\end{aligned}} \right)\)

The row-reduced echelon form is shown below:

\(\left( {\begin{aligned}{*{20}{c}}2&{ - 4}&{ - 2}\\0&{ - 9}&{ - 4}\\0&0&0\end{aligned}} \right)\)

Here, the system of equations is inconsistent.

Thus, b is not in the linear combination of the columns of matrix A.

04

(c) Step 4: Check whether b is in the range of T

Consider the transformation\(T\left( {\bf{x}} \right) = A{\bf{x}}\).

It can also be written as shown below:

\(T\left( {\left( {\begin{aligned}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{aligned}} \right)} \right) = \left( {\begin{aligned}{*{20}{c}}2&{ - 4}&{ - 2}\\{ - 5}&1&1\\7&{ - 5}&{ - 3}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{aligned}} \right)\)

Let the solution be\({\bf{x}} = \left( {\begin{aligned}{*{20}{c}}0\\0\\0\end{aligned}} \right)\).

Then, the transformation becomes as shown below.

\(\begin{aligned}{c}T\left( {\left( {\begin{aligned}{*{20}{c}}0\\0\\0\end{aligned}} \right)} \right) = \left( {\begin{aligned}{*{20}{c}}4&{ - 2}&7\\8&{ - 3}&{10}\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}0\\0\\0\end{aligned}} \right)\\ = \left( {\begin{aligned}{*{20}{c}}0\\0\\0\end{aligned}} \right)\end{aligned}\)

So,\(T\left( {\bf{x}} \right) = \left( {\begin{aligned}{*{20}{c}}0\\0\\0\end{aligned}} \right)\).

Thus, the mapping transforms \({\mathbb{R}^3}\) onto \({\mathbb{R}^3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: There exists a 2x2 matrix such thatA[12]=[34].

Question:Let A be the n x n matrix with 0's on the main diagonal, and 1's everywhere else. For an arbitrary vector bin n, solve the linear system Ax=b, expressing the components x1,.......,xnof xin terms of the components of b. See Exercise 69 for the case n=3 .

Give a geometric description of span \(\left\{ {{v_1},{v_2}} \right\}\) for the vectors \({{\mathop{\rm v}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}8\\2\\{ - 6}\end{array}} \right]\) and \({{\mathop{\rm v}\nolimits} _2} = \left[ {\begin{array}{*{20}{c}}{12}\\3\\{ - 9}\end{array}} \right]\).

Determine whether the statements that follow are true or false, and justify your answer.

18: [111315171921][-13-1]=[131921]

In Exercise 23 and 24, make each statement True or False. Justify each answer.

23.

a. Another notation for the vector \(\left[ {\begin{array}{*{20}{c}}{ - 4}\\3\end{array}} \right]\) is \(\left[ {\begin{array}{*{20}{c}}{ - 4}&3\end{array}} \right]\).

b. The points in the plane corresponding to \(\left[ {\begin{array}{*{20}{c}}{ - 2}\\5\end{array}} \right]\) and \(\left[ {\begin{array}{*{20}{c}}{ - 5}\\2\end{array}} \right]\) lie on a line through the origin.

c. An example of a linear combination of vectors \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\) is the vector \(\frac{1}{2}{{\mathop{\rm v}\nolimits} _1}\).

d. The solution set of the linear system whose augmented matrix is \(\left[ {\begin{array}{*{20}{c}}{{a_1}}&{{a_2}}&{{a_3}}&b\end{array}} \right]\) is the same as the solution set of the equation\({{\mathop{\rm x}\nolimits} _1}{a_1} + {x_2}{a_2} + {x_3}{a_3} = b\).

e. The set Span \(\left\{ {u,v} \right\}\) is always visualized as a plane through the origin.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free